分析 (Ⅰ)由已知条件利用等差数列通项公式和前n项和公式列方程组,求出首项和公差,由此能求出{an}的通项公式;
(Ⅱ)把a1=-9,d=2代入等差数列的前n项和公式化简整理,然后解一元二次不等式即可求出答案.
解答 解:(Ⅰ)设等差数列{an}的公差为d,
∵a1+a5=-10,S4=-24,
∴$\left\{\begin{array}{l}{2{a}_{1}+4d=-10}\\{4{a}_{1}+\frac{4×3}{2}d=-24}\end{array}\right.$,
解得a1=-9,d=2,
∴an=-9+2(n-1)=2n-11;
(Ⅱ)${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d=-9n+\frac{n(n-1)}{2}×2$=n2-10n,
由n2-10n≤-24,整理得n2-10n+24≤0,解得4≤n≤6.
∴集合A={n∈N*|Sn≤-24}中的所有元素为4,5,6.
点评 本题主要考查等差数列的通项公式及前n项和公式,考查了一元二次不等式的解法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com