精英家教网 > 高中数学 > 题目详情
11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1).若向量$\overrightarrow{c}$满足($\overrightarrow{c}+\overrightarrow{a}$)∥$\overrightarrow{b}$,$\overrightarrow{c}$⊥($\overrightarrow{a}+\overrightarrow{b}$),则$\overrightarrow{c}$=(3,-6).

分析 根据题意,设$\overrightarrow{c}$=(x,y),分析可得若($\overrightarrow{c}+\overrightarrow{a}$)∥$\overrightarrow{b}$,则有2(y+2)=(x+1)①,若$\overrightarrow{c}$⊥($\overrightarrow{a}+\overrightarrow{b}$),则有2x+y=0②,联立①②,解可得x、y的值,即可得答案.

解答 解:根据题意,设$\overrightarrow{c}$=(x,y),
则$\overrightarrow{c}$+$\overrightarrow{a}$=(x+1,y+2),$\overrightarrow{a}$+$\overrightarrow{b}$=(2,1),
若($\overrightarrow{c}+\overrightarrow{a}$)∥$\overrightarrow{b}$,则有2(y+2)=(x+1),①
若$\overrightarrow{c}$⊥($\overrightarrow{a}+\overrightarrow{b}$),则有2x+y=0,②
联立①②,解可得x=3,y=-6,
则$\overrightarrow{c}$=(3,-6),
故答案为:(3,-6).

点评 本题考查向量的坐标计算,关键是掌握向量平行、垂直的坐标表示计算方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如表是某校120名学生假期阅读时间(单位:小时)的频率分布表,现用分层抽样的方法从[10,15),[15,20),[20,25),[25,30)四组中抽取20名学生了解其阅读内容,那么从这四组中依次抽取的人数是(  )
 分组 频数 频率
[10,15) 12 0,10
[15,20) 30 a
[20,25) m 0.40
[25,30) n 0.25
 合计 120 1.00
A.2,5,8,5B.2,5,9,4C.4,10,4,2D.4,10,3,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知M是平行四边形ABCD的对角线的交点,P为平面ABCD内任意一点,则$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$等于(  )
A.4$\overrightarrow{PM}$B.3$\overrightarrow{PM}$C.2$\overrightarrow{PM}$D.$\overrightarrow{PM}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和为Sn,S4=-24,a1+a5=-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设集合A={n∈N*|Sn≤-24},求集合A中的所有元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=x3在点P处的切线斜率为3,则点P的坐标为(  )
A.(2,8)B.(-2,-8)C.(1,1)或(-1,-1)D.$(-\frac{1}{2},-\frac{1}{8})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线$y=\frac{1}{4}{x^2}$的焦点坐标为(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列各式的值:
(1)$\frac{1}{{sin{{10}°}}}-\frac{{\sqrt{3}}}{{cos{{10}°}}}$;
(2)$\frac{{sin{{50}°}({1+\sqrt{3}tan{{10}°}})-cos{{20}°}}}{{cos{{80}°}\sqrt{1-cos{{20}°}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知a∈R且a≠0,试比较a与$\frac{1}{a}$的大小;
(2)解关于x的不等式ax2-(a2+1)x+a>0,a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是$\widehat{DF}$的中点.
(Ⅰ)设P是$\widehat{CE}$上的一点,且AP⊥BE,求∠CBP的大小;
(Ⅱ)当AB=3,AD=2,求二面角E-AG-C的大小.

查看答案和解析>>

同步练习册答案