精英家教网 > 高中数学 > 题目详情
16.抛物线$y=\frac{1}{4}{x^2}$的焦点坐标为(  )
A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)

分析 根据题意,先将抛物线的方程变形为标准方程的形式,分析可得抛物线的焦点位置以及p的值,进而可得其焦点坐标,即可得答案.

解答 解:根据题意,抛物线的方程为:$y=\frac{1}{4}{x^2}$,
则其标准方程为:x2=4y,
其焦点在y轴正半轴上,且p=2,
则其焦点坐标为(0,1);
故选:D.

点评 本题考查抛物线的标准方程和性质,注意先将抛物线的方程变形为标准方程的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在等差数列{an}中,a1=2,a3+a5=16.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)如果a2,am,a2m成等比数列,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-(a+1)x+b.
(1)若f(x)<0的解集为(-1,3),求a,b的值;
(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;
(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a3=12,a11=-5,且任意连续三项的和均为11,则a2017=4;设Sn是数列{an}的前n项和,则使得Sn≤100成立的最大整数n=29.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1).若向量$\overrightarrow{c}$满足($\overrightarrow{c}+\overrightarrow{a}$)∥$\overrightarrow{b}$,$\overrightarrow{c}$⊥($\overrightarrow{a}+\overrightarrow{b}$),则$\overrightarrow{c}$=(3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面内不共线的四点O,A,B,C满足$\overrightarrow{OB}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OC}$,则$|\overrightarrow{AB}|:|\overrightarrow{BC}|$=(  )
A.1:3B.3:1C.1:2D.2:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若男运动员抽取了8人,则女运动员抽取的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域:
(1)f(x)=2sin(x+$\frac{π}{6}$),-$\frac{π}{2}$≤x≤$\frac{π}{2}$
(2)y=cos2x-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在四棱锥P-ABCD中,已知DC∥AB,DC=2AB,E为棱PD的中点.
(1)求证:AE∥平面PBC;
(2)若PB⊥PC,PB⊥AB,求证:平面PAB⊥平面PCD.

查看答案和解析>>

同步练习册答案