精英家教网 > 高中数学 > 题目详情
3.求下列各式的值:
(1)$\frac{1}{{sin{{10}°}}}-\frac{{\sqrt{3}}}{{cos{{10}°}}}$;
(2)$\frac{{sin{{50}°}({1+\sqrt{3}tan{{10}°}})-cos{{20}°}}}{{cos{{80}°}\sqrt{1-cos{{20}°}}}}$.

分析 (1)利用两角和的余弦公式化简求值即可;
(2)利用二倍角公式以及两角和的正弦公式化简求值即可.

解答 解:(1)$\frac{1}{{sin{{10}°}}}-\frac{{\sqrt{3}}}{{cos{{10}°}}}$=$\frac{cos10°-\sqrt{3}sin10°}{sin10°cos10°}$=$\frac{2(\frac{1}{2}cos10°-\frac{\sqrt{3}}{2}sin10°)}{\frac{1}{2}sin20°}$
=$\frac{4cos(10°+60°)}{sin20°}=\frac{4sin20°}{sin20°}=4$;
(2)$\frac{{sin{{50}°}({1+\sqrt{3}tan{{10}°}})-cos{{20}°}}}{{cos{{80}°}\sqrt{1-cos{{20}°}}}}$=$\frac{\frac{sin50°}{cos10°}(cos10°+\sqrt{3}sin10°)-cos20°}{cos80°\sqrt{2si{n}^{2}10°}}$
=$\frac{2\frac{cos40°}{cos10°}sin(10°+30°)-cos20°}{\sqrt{2}si{n}^{2}10°}$=$\frac{\frac{sin80°}{cos10°}-cos20°}{\sqrt{2}si{n}^{2}10°}=\frac{1-cos20°}{\frac{\sqrt{2}}{2}(1-cos20°)}=\sqrt{2}$.

点评 本题考查了三角函数的化简求值,考查了三角函数的诱导公式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=-$\frac{2+a{x}^{2}}{{e}^{x}}$(a>0)在区间[0,1]上有极值,且函数f(x)在区间[0,1]上的最小值不小于-$\frac{7}{e}$,则a的取值范围是(  )
A.(2,5]B.(2,+∞)C.(1,4}D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱中ABC-A1B1C1中,二面角A-A1B-C是直二面角,AB=BC═2,点M是棱CC1的中点,三棱锥M-BCA1的体积为1.
(I )证明:BC丄平面ABA1
(II)求平面ABC与平面BCA1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1).若向量$\overrightarrow{c}$满足($\overrightarrow{c}+\overrightarrow{a}$)∥$\overrightarrow{b}$,$\overrightarrow{c}$⊥($\overrightarrow{a}+\overrightarrow{b}$),则$\overrightarrow{c}$=(3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2分别为双曲线:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径圆上,则双曲线的离心率为(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若男运动员抽取了8人,则女运动员抽取的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin2ωx+(2$\sqrt{3}$sinωx-cosωx)cosωx的图象相邻的两个对称中心为($\frac{π}{12}$,0)和($\frac{7π}{12}$,0),其中ω为常数.
(1)求函数f(x)单调递增区间;
(2)在锐角△ABC,内角A,B,C对边a,b,c且满足a=2bsinA,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若cos($\frac{π}{6}$-θ)=$\frac{{\sqrt{3}}}{3}$,则cos($\frac{5π}{6}$+θ)-sin2(θ-$\frac{π}{6}$)=-$\frac{\sqrt{3}+2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线x+2y+a=0过圆x2+y2+2x-4y+1=0的圆心,则实数a的值为(  )
A.-1B.1C.-3D.3

查看答案和解析>>

同步练习册答案