精英家教网 > 高中数学 > 题目详情
12.若函数$f(x)=\left\{\begin{array}{l}-\frac{1}{x},x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,则f(f(-2))=$\sqrt{2}$.

分析 先求出f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$,从而f(f(-2))=f($\frac{1}{2}$),由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}-\frac{1}{x},x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,
∴f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$,
f(f(-2))=f($\frac{1}{2}$)=2$\sqrt{\frac{1}{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最多的人所得的橘子个数是18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的离心率e=$\frac{1}{2}$,一条准线方程为x=4.
(1)求椭圆的标准方程;
(2)若F1,F2为其左右两个焦点,过F1的直线交椭圆于A、B两点.
①若|AB|=2,求|AF2|+|BF2|的值;
②若∠F1AF2=30°,求△F1AF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式$\frac{1}{x}$<-1的解集为(  )
A.{x|-1<x<0}B.{x|x<-1}C.{x|x>-1}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-(a+1)x+b.
(1)若f(x)<0的解集为(-1,3),求a,b的值;
(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;
(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某班举行的联欢会由5个节目组成,节目演出顺序要求如下:节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有42种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a3=12,a11=-5,且任意连续三项的和均为11,则a2017=4;设Sn是数列{an}的前n项和,则使得Sn≤100成立的最大整数n=29.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面内不共线的四点O,A,B,C满足$\overrightarrow{OB}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OC}$,则$|\overrightarrow{AB}|:|\overrightarrow{BC}|$=(  )
A.1:3B.3:1C.1:2D.2:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.5个人排成一排,要求甲排在中间,乙不排在两端,记满足条件的所有不同排法的种数为m.
(1)求m的值;
(2)求$(\sqrt{x}-\frac{2}{x})^{\frac{3m}{4}}$的展开式的常数项.

查看答案和解析>>

同步练习册答案