精英家教网 > 高中数学 > 题目详情
20.不等式$\frac{1}{x}$<-1的解集为(  )
A.{x|-1<x<0}B.{x|x<-1}C.{x|x>-1}D.{x|x<0}

分析 首先移项通分,等价变形为整式不等式解之.

解答 解:原不等式等价于$\frac{x+1}{x}$<0,即x(x+1)<0,
所以不等式的解集是(-1,0);
故选:A.

点评 本题考查了分式不等式的解法;关键是正确转化为整式不等式解之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列四个命题中,真命题是(  )
A.若m>1,则x2-2x+m>0
B.“正方形是矩形”的否命题
C.“若x=1,则x2=1”的逆命题
D.“若x+y=0,则x=0,且y=0”的逆否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知区间[a,b],定义区间长度d=|b-a|,设函数f(x)=sin(x-$\frac{π}{6}$),若函数y=f($\frac{kx}{2}$)-f($\frac{kx}{2}$+$\frac{3π}{2}$)(k>0)在长度为d=$\frac{π}{7}$的任意区间[a,b]上都能取得最大值$\sqrt{2}$和最小值-$\sqrt{2}$,则正数k的最小值为(  )
A.14B.14πC.28D.28π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-(a+2)x+x2
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1,x2∈[1,2],恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{λ}{{x}_{1}{x}_{2}}$成立,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)为二次函数,满足f(0)=1,且f(x+1)-f(x)=2x.
(1)求函数f(x)的解析式;
(2)若方程f(2x)=2x+a在x∈(-∞,2]上有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式组$\left\{\begin{array}{l}{{x}^{2}-1<0}\\{{x}^{2}-3x<0}\end{array}\right.$的解集是(  )
A.{x|-1<x<1}B.{x|-1<x<3}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数$f(x)=\left\{\begin{array}{l}-\frac{1}{x},x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,则f(f(-2))=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.3B.$\frac{9}{5}$C.6D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+b•x+c•3x(b,c∈R),若{x∈R|f(x)=0}={x∈R|f(f(x))=0}≠∅,则b+c的取值范围为[0,4).

查看答案和解析>>

同步练习册答案