精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=alnx-(a+2)x+x2
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1,x2∈[1,2],恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{λ}{{x}_{1}{x}_{2}}$成立,试求λ的取值范围.

分析 (1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(2)问题转化为2x3-(a+2)x2+ax+λ≥0在x∈[1,2]恒成立,根据x的范围得2x3-12x2+10x+λ≥0在x∈[1,2]恒成立,设h(x)=2x3-12x2+10x+λ,根据函数的性质求出λ的范围即可.

解答 解:(1)函数的定义域是(0,+∞),
f′(x)=$\frac{a}{x}$-(a+2)+2x=$\frac{(2x-a)(x-1)}{x}$,
a≤0时,函数在(0,1)递减,在(1,+∞)递增,
0<a<2时,函数在(0,$\frac{a}{2}$),(1,+∞)递增,在($\frac{a}{2}$,1)递减,
a=2时,函数在(0,+∞)递增,
a>2时,函数在(0,1),($\frac{a}{2}$,+∞)递增,在(1,$\frac{a}{2}$)递减;
(2)|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{λ}{{x}_{1}{x}_{2}}$成立,
即|f(x1)-f(x2)|≤λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|恒成立,
不妨设x2>x1,∵a∈[4,10]时,f(x)在[1,2]递减,
则f(x1)-f(x2)≤λ($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$),得f(x1)-$\frac{λ}{{x}_{1}}$≤f(x2)-$\frac{λ}{{x}_{2}}$,
设g(x)=f(x)-$\frac{λ}{x}$=alnx-(a+2)x+x2-$\frac{λ}{x}$,
故对于任意的a∈[4,10],x1,x2∈[1,2],x2>x1,g(x1)≤g(x2)恒成立,
故g(x)=f(x)-$\frac{λ}{x}$在[1,2]递增,
g′(x)=$\frac{{2x}^{3}-(a+2{)x}^{2}+ax+λ}{{x}^{2}}$≥0在x∈[1,2]恒成立,
故2x3-(a+2)x2+ax+λ≥0在x∈[1,2]恒成立,
即a(-x2+x)+2x3-2x2+λ≥0在x∈[1,2]恒成立,
∵x∈[1,2]时,-x2+x≤0,
∴只需10(-x2+x)+2x3-2x2+λ≥0在x∈[1,2]恒成立,
即2x3-12x2+10x+λ≥0在x∈[1,2]恒成立,
设h(x)=2x3-12x2+10x+λ,则h(2)=-12+λ≥0,
故λ≥12,
故实数λ的范围是[12,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-(a+1)x+1(a∈R).
(1若关于x的不等式f(x)<0的解集是{x|m<x<2},求a,m的值;
(2)设关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},若 A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x-1)ex-kx2+2,k∈R.
(Ⅰ) 当k=0时,求f(x)的极值;
(Ⅱ) 若对于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用数学归纳法证明“凸n变形对角线的条数f(n)=$\frac{n(n-3)}{2}$”时,第一步应验证(  )
A.n=1成立B.n=2成立C.n=3成立D.n=4成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的离心率e=$\frac{1}{2}$,一条准线方程为x=4.
(1)求椭圆的标准方程;
(2)若F1,F2为其左右两个焦点,过F1的直线交椭圆于A、B两点.
①若|AB|=2,求|AF2|+|BF2|的值;
②若∠F1AF2=30°,求△F1AF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M、N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P(P不与原点O重合),与椭圆C交于A,B两个不同的点,使得$\overrightarrow{AP}=3\overrightarrow{PB}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式$\frac{1}{x}$<-1的解集为(  )
A.{x|-1<x<0}B.{x|x<-1}C.{x|x>-1}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某班举行的联欢会由5个节目组成,节目演出顺序要求如下:节目甲不能排在第一个,并且节目甲必须和节目乙相邻,则该班联欢会节目演出顺序的编排方案共有42种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设实数x,y满足$\left\{\begin{array}{l}{y≤x}\\{y≥0}\\{y≤-2x+6}\end{array}\right.$,则x+3y的最大值为,8;若x2+4y2≤a恒成立,则实数a为20.

查看答案和解析>>

同步练习册答案