精英家教网 > 高中数学 > 题目详情
13.用数学归纳法证明“凸n变形对角线的条数f(n)=$\frac{n(n-3)}{2}$”时,第一步应验证(  )
A.n=1成立B.n=2成立C.n=3成立D.n=4成立

分析 根据多边形的边数最少为3即可得出答案.

解答 解:因为多边形至少有3条边,
故第一步只需验证n=3结论成立即可.
故选C.

点评 本题考查了数学归纳法步骤,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.甲、乙两人各射击一次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以(-1,2)为圆心且过原点的圆的方程为(x+1)2+(y-2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,a2+a4=5,则a3=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知区间[a,b],定义区间长度d=|b-a|,设函数f(x)=sin(x-$\frac{π}{6}$),若函数y=f($\frac{kx}{2}$)-f($\frac{kx}{2}$+$\frac{3π}{2}$)(k>0)在长度为d=$\frac{π}{7}$的任意区间[a,b]上都能取得最大值$\sqrt{2}$和最小值-$\sqrt{2}$,则正数k的最小值为(  )
A.14B.14πC.28D.28π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,BB1⊥底面ABC,AB=BC=$\sqrt{2}$,∠ABC=90°,BB1=3,D为A1C1的中点.
(1)求直线BC1与CA1所成角的余弦值;
(2)已知点E在线段AA1上,且平面BCE与平面B1DE垂直,求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-(a+2)x+x2
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1,x2∈[1,2],恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{λ}{{x}_{1}{x}_{2}}$成立,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式组$\left\{\begin{array}{l}{{x}^{2}-1<0}\\{{x}^{2}-3x<0}\end{array}\right.$的解集是(  )
A.{x|-1<x<1}B.{x|-1<x<3}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高一年级甲班共48人,其中优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯的调查.
(1)求应从优秀生、中等生、学困生中分别抽取的学生人数;
(2)若从抽取的6名学生中随机抽取2名学生做进一步的数据分析,
①列出所有可能的抽取的结果;
②求抽取的2名学生均为中等生的概率.

查看答案和解析>>

同步练习册答案