| A. | 14 | B. | 14π | C. | 28 | D. | 28π |
分析 先求出函数y=f($\frac{kx}{2}$)-f($\frac{kx}{2}$+$\frac{3π}{2}$),再根据它的周期小于或等于$\frac{π}{7}$,求得正整数k的最小值.
解答 解:∵函数y=f($\frac{kx}{2}$)-f($\frac{kx}{2}$+$\frac{3π}{2}$)=sin($\frac{kx}{2}$-$\frac{π}{6}$)-sin($\frac{kx}{2}$+$\frac{3π}{2}$-$\frac{π}{6}$)=sin($\frac{kx}{2}$-$\frac{π}{6}$)+cos($\frac{kx}{2}$-$\frac{π}{6}$)
=$\sqrt{2}$sin($\frac{kx}{2}$-$\frac{π}{6}$+$\frac{π}{4}$)=$\sqrt{2}$sin($\frac{kx}{2}$+$\frac{π}{12}$)(k>0),
在长度为d=$\frac{π}{7}$的任意区间[a,b]上,改函数都能取得最大值$\sqrt{2}$和最小值-$\sqrt{2}$,
故该函数的周期小于或等于$\frac{π}{7}$,即$\frac{2π}{\frac{k}{2}}$≤$\frac{π}{7}$,求得k≥28,
故k的最小值为28,
故选:C.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A和B,由周期求出ω,由五点法作图求出φ的值,正弦函数的周期性的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=1成立 | B. | n=2成立 | C. | n=3成立 | D. | n=4成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:3 | B. | 3:1 | C. | 1:2 | D. | 2:1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com