精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=(x-1)ex-kx2+2,k∈R.
(Ⅰ) 当k=0时,求f(x)的极值;
(Ⅱ) 若对于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)求出函数的导数,通过讨论k的范围,求出函数的单调区间,求出函数的最小值,根据f(x)min≥1,求出k的范围即可.

解答 解:(Ⅰ)k=0时,f(x)=(x-1)ex+2,
f′(x)=xex
令f′(x)>0,解得:x>0,
令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)递减,在(0,+∞)递增,
故f(x)极小值=f(0)=1;
(Ⅱ)f′(x)=x(ex-2k),
①k≤$\frac{1}{2}$时,f′(x)≥0,f(x)在[0,+∞)递增,
f(x)min=f(0)=1≥1成立,
②k>$\frac{1}{2}$时,ln2k>0,
令f′(x)>0,解得:x>ln2k,
令f′(x)<0,解得:x<ln2k,
故f(x)在[0,ln2k)递减,在(ln2k,+∞)递增,
故f(x)min=f(ln2k)=-k[(ln2k-1)2+1]+1<1,
故k>$\frac{1}{2}$不合题意,
综上,k≤$\frac{1}{2}$.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数y=ax2-2x的图象上有且仅有两个点到直线y=x的距离等于$\sqrt{2}$,则实数a的取值集合是{a|a<-$\frac{9}{8}$或a=0或a$>\frac{9}{8}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个命题中,真命题是(  )
A.若m>1,则x2-2x+m>0
B.“正方形是矩形”的否命题
C.“若x=1,则x2=1”的逆命题
D.“若x+y=0,则x=0,且y=0”的逆否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.以(-1,2)为圆心且过原点的圆的方程为(x+1)2+(y-2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q等于(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等差数列{an}中,a2+a4=5,则a3=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知区间[a,b],定义区间长度d=|b-a|,设函数f(x)=sin(x-$\frac{π}{6}$),若函数y=f($\frac{kx}{2}$)-f($\frac{kx}{2}$+$\frac{3π}{2}$)(k>0)在长度为d=$\frac{π}{7}$的任意区间[a,b]上都能取得最大值$\sqrt{2}$和最小值-$\sqrt{2}$,则正数k的最小值为(  )
A.14B.14πC.28D.28π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=alnx-(a+2)x+x2
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1,x2∈[1,2],恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{λ}{{x}_{1}{x}_{2}}$成立,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为(  )
A.3B.$\frac{9}{5}$C.6D.1

查看答案和解析>>

同步练习册答案