精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(3,-2)则|$\overrightarrow{a}$|=(  )
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

分析 根据向量$\overrightarrow{a}$的坐标即可得出向量$\overrightarrow{a}$的长度.

解答 解:$|\overrightarrow{a}|=\sqrt{{3}^{2}+(-2)^{2}}=\sqrt{13}$.
故选:C.

点评 考查向量坐标的定义,根据向量坐标求向量长度的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若圆C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0上有四个不同的点到直线l:x-y+c=0的距离为2,则c的取值范围是(  )
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-2,2)D.(-2$\sqrt{2}$,2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处切线方程是y=5x-10
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+$\frac{1}{3}$mx,若函数g(x)存在极值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sinθ+cosθ=$\frac{{2\sqrt{2}-1}}{3}$(0<θ<π),则tanθ=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某高中学校共有学生1800名,各年级男女学生人数如表.已知在全校学生中随机抽取1名,抽到高二女生的概率是0.16.
高一年级高二年级高三年级
女生324x280
男生316312y
现用分层抽样的方法,在全校抽取45名学生,则应在高三抽取的学生人数为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列不等式成立的是(  )
A.若|a|<b,则a2>b2B.若|a|>b,则a2>b2C.若a>b,则a2>b2D.若a>|b|,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)=1-2x,g[f(x)]=2x+x,则g(-1)的值为(  )
A.1B.3C.-$\frac{1}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,首项a1=5,公差d=-1,数列{bn}为等比数列,b2=1,公比为q(q>0),cn=anbn,Sn为{cn}的前n项和,记Sn=c1+c2+..+cn
(Ⅰ)求b1+b2+b3的最小值;
(Ⅱ)求S10
(Ⅲ)求出使Sn取得最大的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.化简sin(α-$\frac{π}{2}$)•tan(π-α)=sinα.

查看答案和解析>>

同步练习册答案