精英家教网 > 高中数学 > 题目详情
7.已知数列{an}为等差数列,首项a1=5,公差d=-1,数列{bn}为等比数列,b2=1,公比为q(q>0),cn=anbn,Sn为{cn}的前n项和,记Sn=c1+c2+..+cn
(Ⅰ)求b1+b2+b3的最小值;
(Ⅱ)求S10
(Ⅲ)求出使Sn取得最大的n的值.

分析 (I)b1+b2+b3=q-1+1+q,(q>0),利用基本不等式的性质即可得出最小值.
(II)由题意知:${a_n}=-n+6,{b_n}={q^{n-2}}$,可得 ${c_n}=(-n+6){q^{n-2}}$,利用“错位相减法”、等比数列的求和公式即可得出.
(III)令${c_n}=(-n+6){q^{n-2}}≥0$,解得n即可得出.

解答 解:(I)b1+b2+b3=q-1+1+q≥2+1=3,(q>0),∴最小值为3.
(II)由题意知:${a_n}=-n+6,{b_n}={q^{n-2}}$,∴${c_n}=(-n+6){q^{n-2}}$,
${S_{10}}=5{q^{-1}}+4+3q+2{q^2}+…+(-4){q^8}$,
$q{S_{10}}=5+4q+3{q^2}+2{q^3}+…+(-4){q^9}$,
∴$(1-q){S_{10}}=5{q^{-1}}-(1+q+{q^2}+…+{q^8})+4{q^9}$,
当q=1 时,S10=5.
当q≠1 时,(1-q)S10=$5{q^{-1}}-\frac{{(1-{q^9})}}{1-q}+4{q^9}$,
${S_{10}}=\frac{5}{(1-q)q}-\frac{{(1-{q^9})}}{{{{(1-q)}^2}}}+\frac{{4{q^9}}}{(1-q)}$.
(III)令${c_n}=(-n+6){q^{n-2}}≥0$,
解得:n≤6,∴n取5或6时,Sn 最大.

点评 本题考查了等差数列与等比数列的通项公式、求和公式、“错位相减法”,考查了分类讨论思想、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.关于x的不等式xlnx-kx>3对任意x>1恒成立,则整数k的最大为(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$=(3,-2)则|$\overrightarrow{a}$|=(  )
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t∈R).以直角坐标系的原点为极点,以x轴正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ2cos2θ+3ρ2sin2θ-3=0.
(1)求出直线l的普通方程以及曲线C1的直角坐标方程;
(2)点P是曲线C1上到直线l距离最远的点,求出这个最远距离以及点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=xcosx+sinx的导数f′(x)=2cosx-xsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式(x+1)(2-x)≤0的解集为(  )
A.{x|-1≤x≤2}B.{x|-1<x<2}C.{x|x≥2或x≤-1}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$ln\frac{1+ax}{1-3x}$为奇函数,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足:${a_1}∈{N^*}$,且${a_{n+1}}=\left\{\begin{array}{l}2{a_n},{a_n}≤p\\ 2{a_n}-6,{a_n}>p\end{array}\right.({n=1,2,…})$.记集合$M=\left\{{{a_n}\left|{n∈{N^*}}\right.}\right\}$.
(1)若p=90,a2=6,写出数列{an}的前7项;
(2)若p=18,集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设点M的柱坐标为($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),则其直角坐标是$(-1,-1,\sqrt{2})$.

查看答案和解析>>

同步练习册答案