精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
log2x,x>0
f(x+3),x≤0
,则f(-10)的值是(  )
A、-2B、-1C、0D、1
考点:函数的值
专题:计算题,函数的性质及应用
分析:由题意,代入分段函数求函数的值.
解答: 解:f(-10)=f(-10+3)=f(-7)=f(-7+3)
=f(-4)=f(-4+3)=f(-1)=f(-1+3)=f(2)
=log22=1.
故选D.
点评:本题考查了分段函数的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,设A(3,2),B(-2,-3),沿y轴把坐标平面折成120°的二面角后,AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
e
0
π(lnx)2dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(x-1)(x+2)≤0的解集是(  )
A、[1,2]
B、[-1,2]
C、[-2,1]
D、(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果二次函数y=5x2+mx+4在区间(-∞,-1]上是减函数,则m的取值范围是(  )
A、(-∞,-10]
B、(-∞,10]
C、[10,+∞)
D、[-10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(2+x),g(x)=loga(2-x),a>0且a≠1且设h(x)=f(x)-g(x).
(Ⅰ)求函数h(x)的定义域;
(Ⅱ)判断h(x)的奇偶性,并加以证明;
(Ⅲ)当f(x)>g(x)时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内具有单调性;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么称y=f(x)(x∈D)为闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
5
x+
2
x
(x>0)是否为闭函数?并说明理由;
(3)若函数y=k+
x+1
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中为偶函数的是(  )
A、y=x2+1(x∈R)
B、y=(x+1)2(x∈R)
C、y=x2+1(x>0)
D、y=-x2+1(x>0)

查看答案和解析>>

同步练习册答案