精英家教网 > 高中数学 > 题目详情
16.已知圆C的圆心在直线x+y+1=0,半径为5,且圆C经过点P(-2,0)和点Q(5,1).
(1)求圆C的标准方程;
(2)求过点A(-3,0)且与圆C相切的切线方程.

分析 (1)根据条件利用待定系数法求出圆心即可求圆C的标准方程;
(2)根据直线和圆相切的等价条件即可求过点A(-3,0)且与圆C相切的切线方程.

解答 解:(1)设圆C:(x-a)2+(y-b)2=25,点C在直线x+y+1=0上,则有a+b+1=0,圆C经过点P(-2,0)和点Q(5,1),即:$\left\{\begin{array}{l}{(-2-a)^2}+{(0-b)^2}=25\\{(5-a)^2}+{(1-b)^2}=25\end{array}\right.$,解得:a=2,b=-3.
所以,圆C:(x-2)2+(y+3)2=25.          …(5分)
(2)①若直线l的斜率不存在,即直线是x=-3,与圆相切,符合题意.…(7分)
②若直线l斜率存在,设直线l为y=k(x+3),即kx-y+3k=0.
由题意知,圆心C(2,-3)到直线l的距离等于半径5,即:$\frac{{|{2k+3+3k}|}}{{\sqrt{{k^2}+1}}}=5$(9分)
解得$k=\frac{8}{15}$,切线方程是$y=\frac{8}{15}(x+3)$.   …(11分)
所求切线方程是x=-3或$y=\frac{8}{15}(x+3)$.…(12分)

点评 本题主要考查圆的方程的求解以及直线和圆相切的位置关系的应用,利用待定系数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图是一个程序框图的一部分,若开始输入的数字为t=10,则输出的结果是(  )
A.20B.50C.140D.150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的一段图象如图所示.
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移$\frac{π}{8}$个单位,得到y=g(x)的图象,求直线$y=\sqrt{6}$与函数$y=\sqrt{2}g(x)$的图象在(0,π)内所有交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在[-3,3]上随机地取一个数b,则事件“直线y=x+b与圆x2+y2-2y-1=0有公共点”发生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知a>0,求证:$\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)证明:若a,b,c均为实数,且$a={x^2}-2y+\frac{π}{2}$,$b={y^2}-2z+\frac{π}{3}$,$c={z^2}-2x+\frac{π}{6}$,求证:a,b,c中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,0,2},B={x|x2+x-2=0},则A∩B=(  )
A.B.{2}C.{0}D.{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.$sin\frac{35π}{6}+cos(-\frac{11π}{3})$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格纸上小正方形的边长是1,在其上用粗线画出了某空间几何体的三视图,则这个空间几何体的体积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于(  )
A.f(1)+2f(1)+…+nf(1)B.f($\frac{n(n+1)}{2}$)C.n(n+1)D.n(n+1)f(1)

查看答案和解析>>

同步练习册答案