分析 求出圆心C到直线l的距离,利用勾股定理求出弦长,计算△ABC的面积,从而求出直线的斜率与方程.
解答 解:直线l:(m-1)x+(2m+1)y+3m=0(m∈R),
直线l的方程可化为:(-x+y)+m(x+2y+3)=0,
可得$\left\{\begin{array}{l}{y=x}\\{x+2y+3=0}\end{array}\right.$,
直线恒过:(-1,-1).
圆(x-1)2+y2=r2(r>0)的圆心(1,0),半径为:r.
圆心C到直线l的距离为:d=$\frac{|m-1+3m|}{\sqrt{(m-1)^{2}+(2m+1)^{2}}}$=$\frac{|4m-1|}{\sqrt{5{m}^{2}+2m+2}}$;
所以三角形ABC的面积为S△ABC=$\frac{1}{2}•|AB|•d$≤$\frac{1}{2}$r2,$\frac{1}{2}{r}^{2}$=4,
解得r=2$\sqrt{2}$,此时d=$\frac{\sqrt{2}}{2}r$=2.
所以$\frac{|4m-1|}{\sqrt{5{m}^{2}+2m+2}}$=2,
解得m=$-\frac{1}{2}$或m=-$\frac{7}{2}$
所以,mr2=-4或-28.
故答案为:-4或-28.
点评 本题考查了直线与圆的方程的应用问题,也考查了利用基本不等式求最值的应用问题,考查了勾股定理的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2或-11 | B. | 2或-12 | C. | 1或-12 | D. | 1或-11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com