17£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£¬0¡Ü¦Õ¡Ü¦Ð£©£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=5+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóC1µÄÆÕͨ·½³Ì²¢Ö¸³öËüµÄ¹ì¼££»
£¨¢ò£©ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉäÏßOM£º¦È=$\frac{¦Ð}{4}$Óë°ëÔ²CµÄ½»µãΪO£¬P£¬ÓëÖ±ÏßlµÄ½»µãΪQ£¬ÇóÏß¶ÎPQµÄ³¤£®

·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£¬0¡Ü¦Õ¡Ü¦Ð£©£¬ÏûÈ¥²ÎÊý¦Õ¿ÉµÃÆÕͨ·½³Ì£¬×¢ÒâyµÄȡֵ·¶Î§£®
£¨II£©ÓɰëÔ²C£º£¨x-2£©2+y2=4£¬£¨0¡Üy¡Ü2£©»¯Îª¼«×ø±ê·½³Ì£º¦Ñ=4cos¦È£¬¦È¡Ê$[0£¬\frac{¦Ð}{2}]$£¬°Ñ$¦È=\frac{¦Ð}{4}$´úÈë¿ÉµÃ|OP|£®ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=5+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯ÎªÆÕͨ·½³Ì£¬½ø¶øµÃµ½¼«×ø±ê·½³Ì£¬°Ñ¦È=$\frac{¦Ð}{4}$´úÈë¿ÉµÃ£º|OQ|£®ÀûÓÃ|PQ|=|OQ|-|OP|¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£¬0¡Ü¦Õ¡Ü¦Ð£©£¬
ÏûÈ¥²ÎÊý¦Õ¿ÉµÃÆÕͨ·½³Ì£º£¨x-2£©2+y2=4£®
¡ß0¡Ü¦Õ¡Ü¦Ð£¬
¡à0¡Üx¡Ü4£¬0¡Üy¡Ü2£®
¡àËü±íʾÉϰëÔ²£¬ÆäͼÏóÔÚxÖáµÄÉÏ·½¼°ÆäxÖáÉϵÄÁ½µã£¨0£¬0£©£¬£¨4£¬0£©£®
£¨II£©ÓɰëÔ²C£º£¨x-2£©2+y2=4£¬£¨0¡Üy¡Ü2£©»¯Îª¼«×ø±ê·½³Ì£º¦Ñ=4cos¦È£¬¦È¡Ê$[0£¬\frac{¦Ð}{2}]$£¬
°Ñ$¦È=\frac{¦Ð}{4}$´úÈë¿ÉµÃ¦Ñ=4$cos\frac{¦Ð}{4}$=2$\sqrt{2}$£¬
¡à|OP|=2$\sqrt{2}$£®
ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=5+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýt»¯ÎªÆÕͨ·½³Ì£ºx+y=6£¬
¿ÉµÃ¼«×ø±ê·½³Ì£º¦Ñcos¦È+¦Ñsin¦È=6£¬
°Ñ¦È=$\frac{¦Ð}{4}$´úÈë¿ÉµÃ£º¦Ñ=$\frac{6}{2¡Á\frac{\sqrt{2}}{2}}$=3$\sqrt{2}$=|OQ|£®
¡à|PQ|=|OQ|-|OP|=3$\sqrt{2}$-2$\sqrt{2}$=$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬Õý·½ÐÎABCD-A1B1C1D1ÀⳤΪ1£¬µãE£¬F·Ö±ðÔÚÖ±ÏßAA1£¬BCÉÏ£¬ÈôÖ±ÏßEFÓëÀâC1D1Ïཻ£¬Ôò|A1E|+|CF|µÄ×îСֵÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÔÏÂÊý±íµÄ¹¹Ôì˼·ԴÓÚÎÒ¹úÄÏËÎÊýѧ¼ÒÑî»ÔËùÖøµÄ¡¶Ïê½â¾ÅÕÂËãÊõ¡·Ò»ÊéÖеġ°Ñî»ÔÈý½ÇÐΡ±£®
1  2  3  4  5  ¡­2013   2014  2015  2016
3  5  7  9  ¡­4027  4029  4031
8  12  16  ¡­8056  8060
20  28  ¡­16116
¸Ã±íÓÉÈô¸ÉÊý×Ö×é³É£¬´ÓµÚ¶þÐÐÆð£¬Ã¿Ò»ÐÐÖеÄÊý×Ö¾ùµÈÓÚÆä¡°¼çÉÏ¡±Á½ÊýÖ®ºÍ£¬±íÖÐ×îºóÒ»ÐнöÓÐÒ»¸öÊý£¬ÔòÕâ¸öÊýΪ£¨¡¡¡¡£©
A£®2017¡Á22015B£®2017¡Á22014C£®2016¡Á22015D£®2016¡Á22014

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=sin£¨2x+$\frac{¦Ð}{3}$£©£¬x¡Ê[-$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$]ÇÒº¯Êýg£¨x£©=2[f£¨x£©]2-f£¨x£©-m£®
£¨1£©µ±m=0ʱ£¬Çóº¯Êýy=g£¨x£©µÄÁãµã£»
£¨2£©µ±m¡Ê[-$\frac{1}{8}$£¬3]£¬ÌÖÂÛº¯Êýy=g£¨x£©µÄÁãµã¸öÊý¼°ÏàÓ¦ÁãµãµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=|2x-1|£®
£¨1£©Çó²»µÈʽf£¨x£©£¼2£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨x£©+f£¨x-1£©µÄ×îСֵΪa£¬ÇÒm+n=a£¨m£¾0£¬n£¾0£©£¬Çó$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÉèÖ±Ïßl£º£¨m-1£©x+£¨2m+1£©y+3m=0£¨m¡ÊR£©ÓëÔ²£¨x-1£©2+y2=r2£¨r£¾0£©½»ÓÚA£¬BÁ½µã£¬CΪԲÐÄ£¬µ±ÊµÊým±ä»¯Ê±£¬¡÷ABCÃæ»ýµÄ×î´óֵΪ4£¬Ôòmr2=-4»ò-14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªËÄÀâ×¶P-ABCD£¬µ×ÃæABCDΪÁâÐΣ¬¡ÏABC=60¡ã£¬¡÷PABÊǵȱßÈý½ÇÐΣ¬AB=2£¬PC=$\sqrt{6}$
£¨1£©Ö¤Ã÷£ºÆ½ÃæPAB¡ÍÆ½ÃæABCD£»
£¨2£©ÇóµãDµ½Æ½ÃæABCµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªf£¨x£©=ax-lnx£®
£¨1£©ÌÖÂÛf£¨x£©µ¥µ÷ÐÔ£»
£¨2£©µ±a£¾0ʱ£¬ÒÑÖªf£¨x1£©=f£¨x2£©£¬x1¡Ùx2£¬ÇóÖ¤£ºx1+x2£¾$\frac{2}{a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Éèa¡ÊZ£¬ÇÒ0£¼a£¼13£¬Èô532016+aÄܱ»13Õû³ý£¬Ôòa=£¨¡¡¡¡£©
A£®0B£®1C£®11D£®12

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸