精英家教网 > 高中数学 > 题目详情
某电视台连续播放6个广告,三个不同的商业广告,三个不同的奥运宣传广告,要求最后播放的不能是商业广告,且奥运宣传广告两两不能连续播放,则不同的播放方式有(  )
A、48种B、98种
C、108种D、120种
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:首先排列3个商业广告,有A33种结果,再在三个商业广告形成的四个空中排列三个元素,注意最后一个位置一定要有广告共有C31A32种结果,根据乘法原理得到结果.
解答: 解:由题意知,这里是元素不相邻的问题,
首先排列3个商业广告,有A33=6种结果,
再在三个商业广告形成的四个空中排列三个元素,注意最后一个位置一定要有广告
共有C31A32=18种结果,
根据分步计数原理知共有6×18=108种结果,
故选:C
点评:本题考查分步计数原理,注意题目中对于元素要不同的限制条件,一是有不相邻,二是有一个位置不能是一种元素,并且还不能空着,注意这几种不同要求要同时满足.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={0,1,2},集合B={x,y|x∈A,y∈A,x+y∈A},则B的元素个数为(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该几何体的表面积为(  )
A、4(9+2
3
) cm2
B、(24+8
3
)
cm2
C、14
3
cm2
D、18
3
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,等边△ABC的边长为2,D为AC中点,且△ADE也是等边三角形,将△ADE绕看A点顺时针转到到AD与AB重合的过程中,
BD
CE
的最大值是(  )
A、
3
2
B、
3
2
2
C、
3
3
2
D、
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-aln(-x)-(a+1)x.
(1)求f(x)在R上的解析式;
(2)当a>-1时,讨论f(x)在(0,+∞)上的单调性,并指出其单调区间;
(3)若对于任意的x∈(0,+∞),f(x)≥-
1
2
x2
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解某种产品的质量,抽取容量为30的样本,检测结果为一级品5件,二级品8件.三级品13件,其余的部是次品.已知样本频率分布表的一部分如图所示:
 产品 频数 频率
 一级品 5 0.17
 二级品 8 
 三级品 13 0.43
 次品  0.13
(1)请将样本频率分布表补充完整,并画出样本频率分布条形图;
(2)任意抽取一件产品,试估计它是一级品或二级品的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系下的(1,1)化成极坐标系下的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分步和频率分布直方图
组号分组频数
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合计100
(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的频率;
(Ⅱ)求频率分布直方图中的a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线m、n与平面α、β,有下列四个命题:
①m∥α,n∥β且α∥β,则m∥n;    
②m⊥α,n⊥β且α⊥β,则m⊥n;
③m⊥α,n∥β且α∥β,则m⊥n;   
④m∥α,n⊥β且α⊥β,则m∥n.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案