精英家教网 > 高中数学 > 题目详情
在空间,设是三条不同的直线,是三个不同的平面,则下列命题中为假命题的是
A.若,则
B.若,则
C.若,则
D.若,则
D
,因为,所以在上任意取一点,过点在平面内作。因为所以。过点在平面内作,同理可得,则重合且,故所在直线即直线,所以,A正确;
因为,则存在,而,所以。由线面平行性质定理可得,从而有,B正确;
,因为是三个不同的平面,所以,而,所以,由线面平行性质定理可得,C正确;
,则任意相交,D不正确,故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

四面体中,中点,中点,,则直
线所成的角大小为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m、n是两条不同的直线,是两个不同的平面,给出下列四个命题.
①若,则
②若,则
③若,则
④若,则.
其中正确命题的序号是                           (把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱中,侧面,且与底面成角,,则该棱柱体积的 最小值为          . 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知正四面体的高为H,它的内切球半径为R,则R︰H=______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在棱长为2的正方体中,的中点,的中点.
(1)求证://平面;(2)求三棱锥的体积;
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在底面半径为3,母线长为5的圆锥中内接一个高为的圆柱.
(1)求圆锥的体积.
(2)当为何值时,圆柱的表面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是圆锥为底面中心)的侧面展开图,是其侧面展开图中弧的四等分点,则在圆锥中,下列说法错误的是(  )
A.是直线所成的角;
B.是直线与平面所成的角;
C.是二面角的平面角;
D.平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)如图,在梯形中,,四边形为矩形,平面平面.
(I)求证:平面
(II)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

同步练习册答案