精英家教网 > 高中数学 > 题目详情
20.如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,$AC=BC=\frac{1}{2}A{A_1}=2$,点D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC;
(Ⅱ)求三棱锥C1-BDC的体积.

分析 (Ⅰ)由题设证明BC⊥平面ACC1A1,可得DC1⊥BC,再由已知可得∠ADC=∠A1DC1=45°,得∠CDC1=90°,即C1D⊥DC,结合线面垂直的判定得DC1⊥平面BDC,从而得到平面BDC1⊥平面BDC;
(Ⅱ)由等积法可得三棱锥C1-BDC的体积.

解答 (Ⅰ)证明:由题意知BC⊥CC1,BC⊥AC,AC∩CC1=C,
∴BC⊥平面ACC1A1
又∵DC1?平面ACC1A1,∴DC1⊥BC.
∵∠ADC=∠A1DC1=45°,
∴∠CDC1=90°,即C1D⊥DC.
∵DC∩BC=C,
∴DC1⊥平面BDC,又∵DC1?平面BDC1
∴平面BDC1⊥平面BDC.
(Ⅱ)解:由$AC=BC=\frac{1}{2}A{A_1}=2$,得AA1=4,所以AD=2,
所以$CD=\sqrt{A{C^2}+A{D^2}}=\sqrt{{2^2}+{2^2}}=2\sqrt{2}$.
所以Rt△CDC1的面积$S=\frac{1}{2}×2\sqrt{2}×2\sqrt{2}=4$,
所以${V_{{C_1}-BDC}}={V_{B-CD{C_1}}}=\frac{1}{3}S•BC=\frac{1}{3}×4×2=\frac{8}{3}$.

点评 本题考查平面与平面垂直的判定,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinωx-sin(ωx+$\frac{π}{3}$)(ω>0).
(1)若f(x)在[0,π]上的值域为[-$\frac{\sqrt{3}}{2}$,1],求ω的取值范围;
(2)若f(x)在[0,$\frac{π}{3}$]上单调,且f(0)+f($\frac{π}{3}$)=0,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在[-1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$({x+\frac{m}{x}}){({2x-1})^5}$的展开式中各项系数的和为2,则该展开式中含x的系数为-41.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD.
(2)若$cos∠BAD=\frac{1}{5}$,求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数y=sin(2x+$\frac{π}{6}$)的图象,只需将y=cos(2x-$\frac{π}{6}$)图象上的所有点(  )
A.向左平行移动$\frac{π}{6}$个单位长度B.向右平行移动$\frac{π}{6}$个单位长度
C.向左平行移动$\frac{π}{12}$个单位长度D.向右平行移动$\frac{π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在R上的函数f(x)=2|x|-1,记a=f(log0.53),b=f(log25),c=f(log2$\frac{1}{4}$),则a,b,c的大小关系为a<c<b(用不等式由小到大连接)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{x-1}{x+1}$,x∈[1,3]
(1)判断函数的单调性,并用单调性的定义证明.
(2)求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.平行四边形ABCD中,E为CD的中点,动点G在线段BE上,$\overrightarrow{AG}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则2x+y=2.

查看答案和解析>>

同步练习册答案