分析 根据三角函数的性质先求出a,b的值,即可得到结论.
解答 解:∵b>0,y=a-bcos2x(b>0)的最大值是$\frac{3}{2}$,最小值是-$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{a-b=-\frac{1}{2}}\\{a+b=\frac{3}{2}}\end{array}\right.$,得a=$\frac{1}{2}$,b=1,
则函数y=-4asin(3bx+$\frac{π}{3}$)=-2sin(3x+$\frac{π}{3}$),
则函数的周期T=$\frac{2π}{3}$,
当sin(3x+$\frac{π}{3}$)=-1,即3x+$\frac{π}{3}$=-$\frac{π}{2}$+2kπ,
即x=-$\frac{5π}{18}$+$\frac{2kπ}{3}$,k∈Z时,函数y=-2sin(3x+$\frac{π}{3}$)取得最大值2,
此时x的集合为{x|x=-$\frac{5π}{18}$+$\frac{2kπ}{3}$,k∈Z}.
点评 本题主要考查三角函数的周期性,最值的性质,根据条件求出a,b的值是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $y=sin(-2x-\frac{2π}{3})$ | B. | $y=sin(-2x+\frac{2π}{3})$ | C. | $y=sin(-2x-\frac{π}{3})$ | D. | $y=sin(-2x+\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对于相关系数r来说,|r|≤1,|r|越接近0,相关程度越大;|r|越接近1,相关程度越小 | |
| B. | 对于相关系数r来说,|r|≥1,|r|越接近1,相关程度越大;|r|越大,相关程度越小 | |
| C. | 对于相关系数r来说,|r|≤1,|r|越接近1,相关程度越大;|r|越接近0,相关程度越小 | |
| D. | 对于相关系数r来说,|r|≥1,|r|越接近1,相关程度越小;|r|越大,相关程度越大 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com