精英家教网 > 高中数学 > 题目详情
设a>0,b>0,下列命题中正确的是(  )
A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a<b
C.若2a-2a=2b-3b,则a>bD.若2a-2a=2b-3b,则a<b
∵a≤b时,2a+2a≤2b+2b<2b+3b,
∴若2a+2a=2b+3b,则a>b,故A正确,B错误;
对于2a-2a=2b-3b,若a≥b成立,则必有2a≥2b,故必有2a≥3b,即有a≥
3
2
b,而不是a>b排除C,也不是a<b,排除D.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)某专卖店销售一新款服装,日销售量(单位为件)f (n) 与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f (n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.
(Ⅰ)求f (n) 的表达式,及前m天的销售总数;
(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某医药研究所开发一种抗甲流新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)结合图,求k与a的值;
(2)写出服药后y与t之间的函数关系式y=f(t);
(3)据进一步测定:每毫升血液中含药量不少于0.5微克时治疗疾病有效,求服药一次治疗有效的时间范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为正实数,)的定义域恰为区间,是否存在这样的使得:恰在上取正值,且?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

比较下列各数 , , 的大小为                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a=log20.9,b=3-
1
3
,c=(
1
3
1
2
,(  )
A.a>b>cB.a>c>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(米)与汽车的车速x(千米/小时)满足下列关系:y=
nx
100
+
x2
400
(n为常数,n∈N).我们做过两次刹车实验,两次的结果分别是:当x1=40时,刹车距离为y1;当x2=70时,刹车距离为y2.且5<y1<7,13<y2<15.
(1)求出n的值;
(2)若汽车以80(千米/小时)的速度行驶,发现正前方15米处有一障碍物,紧急刹车,汽车与障碍物是否会相撞?
(3)若要求司机在正前方15米处发现有人就刹车(假设发现有人到刹车司机的反应有0.5秒的间隔),车必须在离人1米以外停住,试问这时汽车的最大限制速度应是多少?(保留整数;参考数据:
6082+4×9×14×3600
=
2184064
≈1478

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为x(单位:分),学生的接受能力为f(x)(f(x)值越大,表示接受能力越强),
f(x)=
-0.1x2+2.6x+44,0<x≤10
60,10<x≤15
-3x+105,15<x≤25
30,25<x≤40

(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程的解集是                                    

查看答案和解析>>

同步练习册答案