精英家教网 > 高中数学 > 题目详情
17.若实数x,y满足约束条件$\left\{\begin{array}{l}1≤x+y≤3\\-1≤x-y≤1\end{array}\right.$,则z=2x+y的取值范围是(  )
A.[0,6]B.[1,6]C.[1,5]D.[0,5]

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.

解答 解:作出不等式组对应的平面区域如图:
设z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A(0,1)时,直线的截距最小,
此时z最小,为z=0+1=1,
当直线y=-2x+z经过点C时,直线的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
即C(2,1),此时z=2×2+1=5,
即1≤z≤5,
故选:C.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若$\frac{1}{tanα-1}$无意义,则α在[0,π]内的值是$\frac{π}{4}$或$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A.f(x)=x2B.f(x)=sinxC.f(x)=exD.f(x)=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,阴影部分(包括边界)为平面区域D,若点P(x,y)在区域D内,则z=x+2y的最小值是-1;x,y满足的约束条件是$\left\{\begin{array}{l}2x-y+2≥0\\ x≤0\\ y≥0.\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了计算1×3×5×7×…×21的结果,设计如图所示的程序框图,则判断框内可填入的条件是(  )
A.n≤9B.n≤10C.n≤11D.n≤12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|$\frac{x-1}{x+2}≥0$,x∈R},则∁RA=(  )
A.{x|-2<x<1}B.{x|-2≤x<1}C.{x|-2≤x≤1}D.{x|-2<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{3},c=2,A=\frac{π}{3}$,则△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,在复平面内,点A对应的复数为z,则复数z2等于(  )
A.3-4iB.3+4iC.-3+4iD.-3-4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow{b}$=(-1,1),则2$\overrightarrow{a}$-$\overrightarrow{b}$=(  )
A.(3,7)B.(3,9)C.(5,7)D.(5,9)

查看答案和解析>>

同步练习册答案