精英家教网 > 高中数学 > 题目详情

【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:):根据样本估计本市生活垃圾投放情况,下列说法错误的是(

厨余垃圾

可回收物

其他垃圾

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

A.厨余垃圾投放正确的概率为

B.居民生活垃圾投放错误的概率为

C.该市三类垃圾箱中投放正确的概率最高的是可回收物

D.厨余垃圾在厨余垃圾箱、可回收物箱、其他垃圾箱的投放量的方差为20000

【答案】D

【解析】

由表格可求得:厨余垃圾投放正确的概率,可回收物投放正确的概率,其他垃圾投放正确的概率,再结合选项进行分析即可.

由表格可得:厨余垃圾投放正确的概率;可回收物投放正确的概率;其他垃圾投放正确的概率

A,厨余垃圾投放正确的概率为,故A正确;

B,生活垃圾投放错误有,故生活垃圾投放错误的概率为,故B正确;

,该市三类垃圾箱中投放正确的概率最高的是“可回收物”箱,故C正确.

D,厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的的投放量的平均数,可得方差

,故D错误;

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的右焦点为,直线为.

1)求到点和直线的距离相等的点的轨迹方程;

2)过点作直线交椭圆于点,又直线于点,若,求线段的长;

3)已知点的坐标为,直线交直线于点,且和椭圆的一个交点为点,是否存在实数,使得?若存在,求出实数,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,.

(1),求

(2),求关于m的表达式;

(3)若数列均是项数为项的有穷数列.,现将中的项一一取出,并按照从小到大的顺序排成一列,得到.求证:对于给定的的所有可能取值的奇偶性相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[﹣1.08]=﹣2,定义函数f(x)=x﹣[x],则下列命题中正确的是  

①函数f(x)的最大值为1; ②函数f(x)的最小值为0;

③方程有无数个根; ④函数f(x)是增函数.

A. ②③ B. ①②③ C. D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数

1)若,求的取值范围;

2)当时,试判断函数上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为α为参数),将C上每一点的横坐标保持不变,纵坐标变为原来的3倍,得曲线C1.以O为极点,x轴正半轴为极轴建立极坐标系.

1)求C1的极坐标方程

2)设MNC1上两点,若OMON,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若数列中存在,其中均为正整数,且),则称数列数列”.

1)若数列的前项和,求证:数列

2)若是首项为1,公比为的等比数列,判断是否是数列,说明理由;

3)若是公差为)的等差数列且),,求证:数列数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

合计

爱好

40

20

60

不爱好

20

30

50

合计

60

50

110

K2

附表:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

10.828

参照附表,得到的正确结论是(

A.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别有关

B.在犯错误的概率不超过0.1%的前提下,认为爱好该项运动与性别无关

C.99%以上的把握认为爱好该项运动与性别有关

D.99%以上的把握认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,若对任意,满足是与无关的常数),则称数列数列.

(1)若),判断数列是否为数列,说明理由;

(2)设,求证:数列数列,并求常数的取值范围;

(3)设数列),问数列是否为数列?说明理由.

查看答案和解析>>

同步练习册答案