精英家教网 > 高中数学 > 题目详情
16.设数列{an}满足:an+1=4+an,且a1=1.
(1)求数列{an}的通项公式;
(2)若bn为an与an+1的等比中项,求数列{$\frac{1}{{b}_{n}^{2}}$}的前n项和Tn

分析 (1)直接利用等差数列的通项公式即得结论;
(2)通过(1)裂项可知$\frac{1}{{b}_{n}^{2}}$=$\frac{1}{4}$($\frac{1}{4n-3}$-$\frac{1}{4n+1}$),进而并项相加即得结论.

解答 解:(1)∵an+1=4+an,且a1=1,
∴an=1+4(n-1)=4n-3;
(2)由(1)可知${{b}_{n}}^{2}$=anan+1=(4n-3)(4n+1),
∴$\frac{1}{{b}_{n}^{2}}$=$\frac{1}{(4n-3)(4n+1)}$=$\frac{1}{4}$($\frac{1}{4n-3}$-$\frac{1}{4n+1}$),
∴Tn=$\frac{1}{4}$(1-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{9}$+…+$\frac{1}{4n-3}$-$\frac{1}{4n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{4n+1}$)
=$\frac{n}{4n+1}$.

点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线C2:$\frac{{y}^{2}}{{b}^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,则关于双曲线C1与C2的命题.
①渐近线相同;
②焦点相同;
③离心率e1,e2满足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④两个双曲线焦点在同一圆上,
其中所有正确的命题序号为(  )
A.①②③B.①③④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图AC1是棱长为2的正方体,M为B1C1的中点,给出下列命题:
①AB1与BC1成60°角;
②若$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{N{C}_{1}}$,面A1MN交CD于E,则CE=$\frac{1}{3}$;
③P点在正方形ABB1A1边界及内部运动,且MP⊥DB1,则P点轨迹长等于$\sqrt{2}$;
④E,F分别在DB1和A1C1上,且$\frac{DE}{E{B}_{1}}$=$\frac{{A}_{1}F}{F{C}_{1}}$=2,直线EF与AD1,A1D所成角分别是α,β,则α+β=$\frac{π}{2}$.
其中正确的命题有①③④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an},若a1=-11,a4+a6=-6,则an=2n-13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在极坐标系中,从四条曲线C1:ρ=1、C2:θ=$\frac{π}{3}$(ρ≥0)、C3:ρ=cosθ、C4:ρsinθ=1中随机选取两条,记它们的交点个数为随机变量ξ,则随机变量ξ的数学期望Eξ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某人经营一个抽奖游戏,顾客花费2元可购买一次游戏机会,每次游戏中,顾客从装有1个人黑球,3个红球,6个白球的不透明袋子中依次不放回地摸出3个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖,顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金a元、10元、5元、1元.若经营者将顾客摸出的3个球的颜色情况分成以下类别:A:1个黑球2个红球;B:3个红球;C:恰有1个白球;D:恰有2个白球;E:3个白球.且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次.
(1)请写出一至四等奖分别对应的类别(写出字母即可);
(2)若经营者不打算在这个游戏的经营中亏本,求a的最大值;
(3)若a=50,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,A、B、C所对的边分别为a、b、c,且bsinB=(sinA-sinC)(a+c)数列an=n2n-1(|sinnA|+|cosnA|),
(1)求A;  
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$y=sinx({-\frac{π}{3}<x<\frac{2π}{3}})$的值域用区间表示为(-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,sin(A+B)+2sin(B+C)cos(A+C)=0,则△ABC一定是(  )
A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形

查看答案和解析>>

同步练习册答案