分析 运用向量的数量积的坐标表示,以及二倍角公式和辅助角公式,结合正弦函数的图象和性质,即可得到最值.
解答 解:f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$sinxcosx+cos2x-m2
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$-m2
=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$-m2,
由$x∈[{-\frac{π}{6},\frac{π}{3}}]$,可得2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
即有x=-$\frac{π}{6}$时,sin(2x+$\frac{π}{6}$)取得最小值-$\frac{1}{2}$,
可得f(x)的最小值为-m2=-4,可得m=±2;
x=$\frac{π}{6}$时,sin(2x+$\frac{π}{6}$)取得最大值1,
即有f(x)取得最大值1+$\frac{1}{2}$-4=-$\frac{5}{2}$,
故答案为:-$\frac{5}{2}$,$\frac{π}{6}$.
点评 本题考查向量的数量积的坐标表示,考查正弦函数的值域的求法,注意运用二倍角公式和辅助角公式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (±1,0) | B. | $({±\sqrt{2m+1},0})$ | C. | (0,±1) | D. | $({0,±\sqrt{2m+1}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{3}}}{5}$ | D. | $\frac{{2\sqrt{3}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com