精英家教网 > 高中数学 > 题目详情
13.(1)已知△ABC三个顶点坐标为A(2,-1),B(2,2),C(4,1),求三角形AC边上的中线所在直线方程;
(2)倾斜角为60°且与直线5x-y+2=0有相同纵截距的直线方程.

分析 (1)由中点坐标公式求出AC的中点坐标,再由直线方程的两点式求得三角形AC边上的中线所在直线方程;
(2)化直线系方程的一般式为斜截式,得到已知直线的纵截距,再由斜率等于倾斜角的正切值求得所求直线的斜率,代入直线方程的点斜式得答案.

解答 解:(1)由A(2,-1),C(4,1),得AC的中点坐标为(3,0),
又B(2,2),由直线方程的两点式得$\frac{y-0}{2-0}=\frac{x-3}{2-3}$,即2x+y-6=0.
∴三角形AC边上的中线所在直线方程为2x+y-6=0;
(2)由直线5x-y+2=0,得y=5x+2,∴直线5x-y+2=0的纵截距为2,
由k=tan60°=$\sqrt{3}$,
可得倾斜角为60°且与直线5x-y+2=0有相同纵截距的直线方程为y=$\sqrt{3}x+2$.

点评 本题考查直线的一般式方程,考查了直线方程的两点式与斜截式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若[x]表示不超过实数x的最大整数,函数f(x)=x-[x],x∈R,则下列四个关于函数f(x)的命题:
①f(x)的值域为[0,1);
②f(x)为R上的增函数;
③f(x)为奇函数;
④f(x)为周期函数.
其中真命题的序号为(  )
A.①④B.①③C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知ρ:$\frac{1}{x-1}$<1,q:x2+(a-1)x-a>0,若p是q的充分不必要条件,则实数a的取值范围是[-2,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=-ln(-x+1);g(x)=$\left\{\begin{array}{l}{x^2}({x≥0})\\ f(x)({x<0})\end{array}$,则g(-2)=-ln3;函数y=g(x)+1的零点是1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P是曲线${C_1}:\frac{x^2}{4}+{y^2}=1$上的动点,延长PO(O是坐标原点)到Q,使得|OQ|=2|OP|,点Q的轨迹为曲线C2
(1)求曲线C2的方程;
(2)若点F1,F2分别是曲线C1的左、右焦点,求$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$的取值范围;
(3)过点P且不垂直x轴的直线l与曲线C2交于M,N两点,求△QMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.偶函数f(x)在(a>0)上是单调函数,且f(0)f(a)<0,则方程f(x)=0在区间[-a,a]内根的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x1,x2∈(0,+∞)且x1≠x2,则下列性质对函数f(x)=log2x一定成立的是②③.(将所有正确的序号写在横线上)
①f(x1+x2)=f(x1)•f(x2)                 ②f(x1•x2)=f(x1)+f(x2
③[f(x1)-f(x2)](x1-x2)>0               ④f(x1•x2)=f(x1)•f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥A-BCD中,二面角A-BC-D的大小为$\frac{π}{4}$,AB⊥BC,DC⊥BC,M,N分别为AC,BD的中点,已知AB=$\sqrt{2}$,BC=CD=1.
(Ⅰ)求证:MN⊥面BCD;
(Ⅱ)求直线AD与平面BCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.全称命题“?a∈Z,a有正因数”的否定是?a∈Z,a没有正因数.

查看答案和解析>>

同步练习册答案