精英家教网 > 高中数学 > 题目详情
18.偶函数f(x)在(a>0)上是单调函数,且f(0)f(a)<0,则方程f(x)=0在区间[-a,a]内根的个数为2.

分析 由条件f(0)•f(a)<0可知,f(x)在(0,a)上有至少一个零点,又根据函数在(0,a)上单调,说明函数在(0,a)有且只有一个零点,再根据函数为偶函数,图象关于y轴对称,即可知函数在区间(-a,0)也有唯一零点,因此可以得出答案.

解答 解:由二分法和函数的单调性可知:函数在区间[0,a]上有且只有一个零点,设为x=x0
∵函数是偶函数,
∴f(-x0)=f(x0)=0
故其在对称区间[-a,0]上也有唯一零点,
即函数在区间[-a,a]上存在两个零点,
故答案为:2.

点评 本题主要考查了函数零点的判定定理,属于基础题.灵活运用单调性和奇偶性以及函数的图象,有助于这类问题的解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.作出下列各个函数图象的示意图:
(1)y=log${\;}_{\frac{1}{2}}$(-x);
(2)y=-($\frac{1}{2}$)x
(3)y=log2|x|;
(4)y=|x2-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)-$\frac{1}{2}$cos2x,x∈R.
(1)求f(x)的最小正周期.
(2)求f(x)在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,ABCD-A1B1C1D1为正方体,则下列结论错误的是(  )
A.A1C⊥B1D1B.B1D1∥平面BDC1
C.A1C⊥平面BDC1D.异面直线AD与BC1所成的角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知△ABC三个顶点坐标为A(2,-1),B(2,2),C(4,1),求三角形AC边上的中线所在直线方程;
(2)倾斜角为60°且与直线5x-y+2=0有相同纵截距的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x-1),则x<0时,f(x)的解析式为(  )
A.f(x)=x(x+1)B.f(x)=-x(x+1)C.f(x)=x(1-x)D.f(x)=x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{OB}$=(2,0),向量$\overrightarrow{OC}$=(2,2),向量$\overrightarrow{CA}$=($\sqrt{2}$cosα,$\sqrt{2}$sinα),则向量$\overrightarrow{OA}$与向量$\overrightarrow{CB}$的夹角的取值范围是[105°,165°].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(3,$\sqrt{3}$),$\overrightarrow{b}$=(-$\sqrt{3}$,1),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角大小是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数y=($\frac{2}{2c+1}$)-x在R上单调递减,且函数g(x)=lg(2cx2+2x+1)的值域为R,则c的取值范围是0≤c<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案