精英家教网 > 高中数学 > 题目详情
8.已知点P是曲线${C_1}:\frac{x^2}{4}+{y^2}=1$上的动点,延长PO(O是坐标原点)到Q,使得|OQ|=2|OP|,点Q的轨迹为曲线C2
(1)求曲线C2的方程;
(2)若点F1,F2分别是曲线C1的左、右焦点,求$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$的取值范围;
(3)过点P且不垂直x轴的直线l与曲线C2交于M,N两点,求△QMN面积的最大值.

分析 (1)设Q(x,y),P(x′,y′),由$\overrightarrow{OQ}$=2$\overrightarrow{PO}$,可得(x,y)=-2(x′,y′),可得$\left\{\begin{array}{l}{{x}^{′}=-\frac{1}{2}x}\\{{y}^{′}=-\frac{1}{2}y}\end{array}\right.$,代入曲线C1的方程可得曲线C2的方程.
(2)设P(2cosθ,sinθ),则Q(-4cosθ,-2sinθ).利用数量积运算性质可得:$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$=-6$(cosθ+\frac{\sqrt{3}}{2})^{2}$-$\frac{1}{2}$,利用二次函数与三角函数的值域即可得出.
(3)设P(2cosθ,sinθ),则Q(-4cosθ,-2sinθ).设经过点P的直线方程为:y-sinθ=k(x-2cosθ),M(x1,y1),N(x2,y2).与椭圆方程联立化为:(1+4k2)x2-8k(sinθ-2kcosθ)x+4(sinθ-2kcosθ)2-16=0,可得|MN|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$,点Q到直线l的距离d.可得S△QMN=$\frac{1}{2}$d|MN|,通过三角函数代换,利用二次函数的单调性即可得出.

解答 解:(1)设Q(x,y),P(x′,y′),∵$\overrightarrow{OQ}$=2$\overrightarrow{PO}$,∴(x,y)=-2(x′,y′),可得$\left\{\begin{array}{l}{{x}^{′}=-\frac{1}{2}x}\\{{y}^{′}=-\frac{1}{2}y}\end{array}\right.$,代入$\frac{({x}^{′})^{2}}{4}$+(y′)2=1,可得$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,
∴曲线C2的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1.
(2)F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0).设P(2cosθ,sinθ),则Q(-4cosθ,-2sinθ).
则$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$=(2cosθ+$\sqrt{3}$,sinθ)•(-4cosθ-$\sqrt{3}$,-2sinθ)=(2cosθ+$\sqrt{3}$)(-4cosθ-$\sqrt{3}$)+sinθ(-2sinθ)=-6$(cosθ+\frac{\sqrt{3}}{2})^{2}$-$\frac{1}{2}$,
∵cosθ∈[-1,1],∴$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}Q}$∈$[-11-6\sqrt{3},-\frac{1}{2}]$.
(3)设P(2cosθ,sinθ),则Q(-4cosθ,-2sinθ).
设经过点P的直线方程为:y-sinθ=k(x-2cosθ),M(x1,y1),N(x2,y2).
联立$\left\{\begin{array}{l}{y-sinθ=k(x-2cosθ)}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$,化为:(1+4k2)x2-8k(sinθ-2kcosθ)x+4(sinθ-2kcosθ)2-16=0,
∴x1+x2=$\frac{8k(sinθ-2kcosθ)}{1+4{k}^{2}}$,x1x2=$\frac{4(sinθ-2kcosθ)^{2}-16}{1+4{k}^{2}}$,
∴|MN|=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\frac{4\sqrt{1+{k}^{2}}\sqrt{4+16{k}^{2}-(sinθ-2kcosθ)^{2}}}{1+4{k}^{2}}$,
点Q到直线l的距离d=$\frac{|-4kcosθ+2sinθ+sinθ-2kcosθ|}{\sqrt{1+{k}^{2}}}$=$\frac{3|sinθ-2kcosθ|}{\sqrt{1+{k}^{2}}}$.
∴S△QMN=$\frac{1}{2}$d|MN|=6|sinθ-2kcosθ|$\sqrt{4+16{k}^{2}-(sinθ-2kcosθ)^{2}}$.
令|sinθ-2kcosθ|=$\sqrt{1+4{k}^{2}}$|sinα|,
则S△QMN=6|sinα|$\sqrt{4-si{n}^{2}α}$,令|sinα|=t∈[-1,1],
∴S△QMN=6t$\sqrt{4-{t}^{2}}$=f(t),令|sinα|=t∈[-1,1],
则f2(t)=-36t4+144t2=-36(t2-2)2+144,
当且仅当t2=1时,f(t)取得最大值6$\sqrt{3}$.

点评 本题考查了椭圆的标准方程及其参数方程、三角函数的值域、二次函数的单调性、直线与椭圆相交弦长公式、三角形面积计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.正方形ABCD的边长为2,(如图),线段MN=1,当点M、N在正方形ABCD的边上滑动一周(保持MN的长度不变)时,线段MN的中点P的轨迹围成一个封闭图形E,现向正方形中随机投入一点,则该点落在E内的概率是(  )
A.$\frac{7}{8}$B.$\frac{π}{16}$C.$1-\frac{π}{16}$D.$\frac{3}{4}+\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.现给如图所示的4个区域涂色,要求相邻区域不得使用同一颜色,共有3种颜色可供选择,则不同的   涂色方法共有6种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α,β是第二象限的角,且sinα<sinβ,那么下列不等式成立的是(  )
A.α<βB.cosα<cosβC.tanα<tanβD.sinα>sinβ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆O:x2+y2=4和点M(1,a).
(Ⅰ)若过点M有且只有一条直线与圆O相切,求正数a的值,并求出切线方程;
(Ⅱ)若a=$\sqrt{2}$,过点M的圆的两条弦AC,BD相互垂直,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知△ABC三个顶点坐标为A(2,-1),B(2,2),C(4,1),求三角形AC边上的中线所在直线方程;
(2)倾斜角为60°且与直线5x-y+2=0有相同纵截距的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{x^2}-x-6≤0\\|{x+1}|>3.\end{array}\right.$
(1)若a=1,p且q为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$是两个不共线的向量,$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$-2k$\overrightarrow{{e}_{2}}$,若A,B,D共线,则k的值为(  )
A.-$\frac{9}{4}$B.-$\frac{4}{9}$C.-$\frac{3}{8}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|y=$\sqrt{{x}^{2}-7x-18}$},集合B={y|y=log5(4-2x-x2)},集合C={x|m+2<x<2m-3}.
(1)设全集U=R,求(∁UA)∩B;    
(2)若A∩C=C,求实数m的取值范围.

查看答案和解析>>

同步练习册答案