精英家教网 > 高中数学 > 题目详情
16.某个服装店经营某种服装,在某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据如表:
X3456789
y66697381899091
已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求$\overline x$,$\overline y$;
(2)画出散点图;
(3)判断纯利润y与每天销售件数x之间是否线性相关,如果线性相关,求出线性回归方程.

分析 (1)由某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据表,能求出$\overline x$,$\overline y$.
(2)由某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据表,能作出散点图.
(3)由散点图知,y与x有线性相关关系.设回归直线方程:$\widehat{y}$=bx+a,由此能求出线性回归方程.

解答 解:(1)$\overline{x}$=$\frac{1}{7}$(3+4+5+6+7+8+9)=6,
$\overline{y}$=$\frac{1}{7}$(66+69+73+81+89+90+91)=79.86.
(2)由某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据表,
作出散点图如下:



(3)由散点图知,y与x有线性相关关系.
设回归直线方程:$\widehat{y}$=bx+a,
∵x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
${{y}_{1}}^{2}$+${{y}_{2}}^{2}$+…+${{y}_{7}}^{2}$=45 309,$\overline{x}$=6,$\overline{y}$=79.86,
∴b=$\frac{3487-7×6×\frac{559}{7}}{280-7×36}$=4.75.
a=79.86-6×4.75=51.36,
∴回归直线方程$\widehat{y}$=4.75x+51.36.

点评 本题考查平均数的求法,考查散点图的作法,考查线性回归直线方程的求法,是中档题,解题时要认真审题,注意线性回归方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos2x-sinxcosx
(1)求f(x)的最小正周期;
(2)求函数f(x)的单调递增区间;
(3)求f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.${∫}_{0}^{\frac{π}{2}}$cosxdx等于(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{3^{x+1}}\\{log_2}x\end{array}$$\begin{array}{l},x≤1\\;x>1.\end{array}$,若f(x0)>3,则x0的取值范围是(  )
A.x0>8B.0<x0≤1或x0>8C.0<x0<8D.-1<x0<0或0<x0<8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用部分自然数构造如图的数表:用aij(i≥j)表示第i行第j个数(i,j∈N+),使得ai1=aii=i.每行中的其他各数分别等于其“肩膀”上的两个数之和,a(i+1)j=ai(j-1)+aij(i≥2,j≥2).设第n(n∈N+)行的第二个数为bn(n≥2).
(1)写出第7行的第三个数; 
(2)写出bn+1与bn的关系并求bn(n≥2);
(3)设cn=2(bn-1)+n,证明:$\frac{1}{c_2}$+$\frac{1}{c_4}$+$\frac{1}{c_6}$+…+$\frac{1}{{{c_{2n}}}}$<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(3,4),则$\overrightarrow a$在$\overrightarrow b$方向上的投影为(  )
A.$2\sqrt{5}$B.$\sqrt{5}$C.2D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知随机变量ξ的分布列为
ξ-2-10123
P$\frac{1}{12}$$\frac{3}{12}$$\frac{4}{12}$$\frac{1}{12}$$\frac{2}{12}$$\frac{1}{12}$
若P(ξ2>x)=$\frac{1}{12}$,则实数x的取值范围是[4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x-a≥0}\end{array}\right.$,若|$\frac{y}{x-2}$|=$\frac{1}{2}$恒成立,则实数a的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有6名同学参加演讲比赛,编号分别为1,2,3,4,5,6,比赛结果设特等奖一名,A,B,C,D四名同学对于谁获得特等奖进行预测:
A说:不是1号就是2号获得特等奖;
B说:3号不可能获得特等奖;
C说:4,5,6号不可能获得特等奖;
D说:能获得特等奖的是4,5,6号中的一个.
公布的比赛结果表明,A,B,C,D,四人中只有一人判断正确.
根据以上信息,获得特等奖的是3号同学.

查看答案和解析>>

同步练习册答案