精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=cos2x-sinxcosx
(1)求f(x)的最小正周期;
(2)求函数f(x)的单调递增区间;
(3)求f(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=$-\frac{{\sqrt{2}}}{2}sin(2x-\frac{π}{4})+\frac{1}{2}$,利用周期公式即可得解f(x)的最小正周期;
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,即可求得函数f(x)的单调递增区间.
(3)由$0≤x≤\frac{π}{2}$,得$-\frac{π}{4}≤2x-\frac{π}{4}≤\frac{3π}{4}$,进而可得$-\frac{{\sqrt{2}}}{2}≤sin(2x-\frac{π}{4})≤1$,利用正弦函数的图象和性质即可得解.

解答 (本题满分为12分)
解:(1)f(x)=cos2x-sinxcosx
=$\frac{1+cos2x}{2}-\frac{1}{2}sin2x$…3分
=$-\frac{1}{2}(sin2x-cos2x)+\frac{1}{2}$
=$-\frac{{\sqrt{2}}}{2}sin(2x-\frac{π}{4})+\frac{1}{2}$,…5分
所以f(x)的最小正周期$T=\frac{2π}{2}=π$.…6分
(2)令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,k∈Z,
可得函数f(x)的单调递增区间为:[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.…7分
(3)由$0≤x≤\frac{π}{2}$,得$-\frac{π}{4}≤2x-\frac{π}{4}≤\frac{3π}{4}$,
所以$-\frac{{\sqrt{2}}}{2}≤sin(2x-\frac{π}{4})≤1$,…8分
所以当$2x-\frac{π}{4}=-\frac{π}{4}$,即x=0时,$f{(x)_{max}}=-\frac{{\sqrt{2}}}{2}×(-\frac{{\sqrt{2}}}{2})+\frac{1}{2}=1$;  …10分
当$2x-\frac{π}{4}=\frac{π}{2}$,即$x=\frac{3π}{8}$时,$f{(x)_{min}}=-\frac{{\sqrt{2}}}{2}×1+\frac{1}{2}=\frac{{1-\sqrt{2}}}{2}$.…12分.

点评 本题主要考查了三角函数恒等变换的应用,周期公式,正弦函数的图象和性质,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点P0(x0,y0)和直线l:Ax+By+C=0,写出求点P0到直线l的距离d的算法并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某城市随机抽取一年内100 天的空气质量指数(AQI)的监测数据,结果统计如表:
API[0,50](50,100](100,150](150,200](200,300]>300
空气质量轻度污染轻度污染中度污染重度污染
天数61418272015
(Ⅰ)若本次抽取的样本数据有30 天是在供暖季,其中有8 天为严重污染.根据提
供的统计数据,完成下面的2×2 列联表,并判断是否有95%的把握认为“该城市本年的
空气严重污染与供暖有关”?
非重度污染严重污染合计
供暖季22830
非供暖季63770
合计8515100
(Ⅱ)已知某企业每天的经济损失y(单位:元)与空气质量指数x 的关系式为y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{400,100<x≤300}\\{2000,x>300}\end{array}\right.$试估计该企业一个月(按30 天计算)的经济损失的数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为2的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为(  )
A.$4\sqrt{2}$B.$2\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.方程sin(2x-$\frac{π}{4}$)=|lgx|根的个数等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}满足a1=$\frac{1}{4}$,an+1=$\frac{1}{4-4{a}_{n}}$,若不等式$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{3}}{{a}_{2}}$+…+$\frac{{a}_{n+2}}{{a}_{n+1}}$<n+λ对任何正整数n恒成立,则实数λ的最小值为(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一个锥体挖去一个柱体后的三视图如图所示,网格上小正方形的边长为1,则该几何体的体积等于(  )
A.11πB.C.$\frac{11}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某个服装店经营某种服装,在某周内获纯利润y/元与该周每天销售这种服装件数x/件之间的数据如表:
X3456789
y66697381899091
已知x12+x22+…+x72=280,x1y1+x2y2+…+x7y7=3487.
(1)求$\overline x$,$\overline y$;
(2)画出散点图;
(3)判断纯利润y与每天销售件数x之间是否线性相关,如果线性相关,求出线性回归方程.

查看答案和解析>>

同步练习册答案