10£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$£¬Ôò$\overrightarrow a¡Í\overrightarrow b$
B£®Èôa£¬b£¬cΪʵÊý£¬ÇÒa£¼b£¼0£¬Ôò$\frac{b}{a}£¼\frac{a}{b}$
C£®ÒÑÖªm£¬nÊǿռäÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊǿռäÈý¸ö²»Í¬µÄÆ½Ãæ£¬Èô¦Á¡É¦Ã=m£¬¦Â¡É¦Ã=n£¬m¡ÎnÔò¦Á¡Î¦Â
D£®ÒÑÖªÖ±Ïßl1£ºA1x+B1y+C1=0£¬l2£ºA2x+B2y+C2=0£¬ÈôA1B2=A2B1£¬Ôòl1¡Îl2

·ÖÎö ÀûÓÃÏòÁ¿¹ØÏµÅжÏAµÄÕýÎó£»²»µÈʽµÄ»ù±¾ÐÔÖÊÅжÏBµÄÕýÎ󣻿ռäÖ±ÏßÓëÆ½ÃæµÄλÖùØÏµÅжÏCµÄÕýÎó£»Ö±ÏßÓëÖ±Ï߯½ÐеijäÒªÌõ¼þÅжÏDµÄÕýÎó£»

½â´ð ½â£º¶ÔÓÚA£¬Èô$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$£¬Á½¸öÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$¹²Ïß·´Ïò£¬²»ÊÇ$\overrightarrow a¡Í\overrightarrow b$£¬A²»ÕýÈ·£»
¶ÔÓÚB£¬Èôa£¬b£¬cΪʵÊý£¬ÇÒa£¼b£¼0£¬¿ÉµÃa2£¾b2Ôò$\frac{b}{a}£¼\frac{a}{b}$£¬³ÉÁ¢£®
¶ÔÓÚC£¬ÒÑÖªm£¬nÊǿռäÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊǿռäÈý¸ö²»Í¬µÄÆ½Ãæ£¬Èô¦Á¡É¦Ã=m£¬¦Â¡É¦Ã=n£¬m¡ÎnÔò¦Á¡Î¦ÂÓпÉÄÜÏཻ£¬ËùÒÔC²»ÕýÈ·£»
¶ÔÓÚD£¬ÒÑÖªÖ±Ïßl1£ºA1x+B1y+C1=0£¬l2£ºA2x+B2y+C2=0£¬ÈôA1B2=A2B1£¬Ôòl1¡Îl2£¬Ò²¿ÉÄÜÖØºÏ£¬ËùÒÔD²»ÕýÈ·£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙµÄÅжÏÓëÓ¦Óã¬Éæ¼°ÏòÁ¿¹²ÏßÓë´¹Ö±£¬²»µÈʽµÄ»ù±¾ÐÔÖÊ£¬¿Õ¼äÖ±ÏßÓëÖ±Ïߣ¬Ö±ÏßÓëÆ½ÃæµÄλÖùØÏµµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª$a_1^2+b_1^2¡Ù0$£¬$a_2^2+b_2^2¡Ù0$£¬Ôò¡°$|{\begin{array}{l}{a_1}&{b_1}\\{{a_2}}&{b_2}\end{array}}|¡Ù0$¡±ÊÇ¡°Ö±Ïßa1x+b1y+c1=0ÓëÖ±Ïßa2x+b2y+c2=0¡±Æ½Ðе썡¡¡¡£©Ìõ¼þ£®
A£®³ä·Ö²»±ØÒªB£®±ØÒª²»³ä·Ö
C£®³äÒªD£®¼È²»³ä·ÖÒ²²»±ØÒª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin£¨x+¦È£©+cos£¨x+¦È£©$£¨¦È¡Ê[-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}]£©$ÊÇżº¯Êý£¬Ôò¦ÈµÄֵΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®ÒÑÖªcosB=$\frac{\sqrt{3}}{3}$£¬sin£¨A+B£©=$\frac{\sqrt{6}}{9}$
£¨1£©ÇósinA£®
£¨2£©Èôac=2$\sqrt{3}$£¬Çóc£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬ÈôÊäÈëNµÄֵΪ17£¬ÔòÊä³öNµÄֵΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¾ßÓÐÏà¹Ø¹ØÏµµÄÁ½¸ö±äÁ¿x£¬yÖ®¼äµÄ¼¸×éÊý¾ÝÈçϱíËùʾ£º
x246810
y3671012
£¨1£©Çë¸ù¾ÝÉϱíÊý¾ÝÔÚÍø¸ñÖ½ÖлæÖÆÉ¢µãͼ£»
£¨2£©Çë¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£¬²¢¹À¼Æµ±x=20ʱ£¬yµÄÖµ£»
£¨3£©½«±í¸ñÖеÄÊý¾Ý¿´×÷Îå¸öµãµÄ×ø±ê£¬Ôò´ÓÕâÎå¸öµãÖÐËæ»ú³éÈ¡2¸öµã£¬ÇóÕâÁ½¸öµã¶¼ÔÚÖ±Ïß2x-y-4=0µÄÓÒÏ·½µÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}$£¬$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÈýÀâ×¶P-ABCÖУ¬¡÷ABCÊÇÕýÈý½ÇÐΣ¬¡÷ACPÊÇÖ±½ÇÈý½ÇÐΣ¬¡ÏABP=¡ÏCBP£¬AB=BP£®
£¨1£©Ö¤Ã÷£ºÆ½ÃæACP¡ÍÆ½ÃæABC£»
£¨2£©ÈôEΪÀâPBÓëP²»Öغϵĵ㣬ÇÒAE¡ÍCE£¬ÇóAEÓëÆ½ÃæABCËù³ÉµÄ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ü1}\\{x-y+1¡Ý0}\\{x+2y-2¡Ý0}\end{array}\right.$£¬Ôòz=x2+y2µÄ×îСֵΪ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸