精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\sqrt{3}$sin(x+θ)+cos(x+θ)$(θ∈[-\frac{π}{2},\frac{π}{2}])$是偶函数,则θ的值为$\frac{π}{3}$.

分析 由题意可得f(-x)=f(x),利用出公式可得:sin(x+θ+$\frac{π}{6}$)=0,上式对于任意实数x∈R都成立,可得cosθ=0,$(θ∈[-\frac{π}{2},\frac{π}{2}])$即可得出.

解答 解:∵函数函数f(x)=$\sqrt{3}$sin(x+θ)+cos(x+θ)=2sin(x+θ+$\frac{π}{6}$)$(θ∈[-\frac{π}{2},\frac{π}{2}])$是偶函数,∴$θ+\frac{π}{6}=kπ+\frac{π}{2}$,
$(θ∈[-\frac{π}{2},\frac{π}{2}])$.
∴θ=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查了函数的奇偶性、两角和与差的三角函数公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{3}$x3-ax2+2且f′(-1)=3,求该函数f(x)在区间[-1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式|x+1|-|x-3|≤a在实数集上有解,则实数a的取值范围为[-4,+∞].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=|2x+3|+|x-1|.
(1)解不等式f(x)>4;
(2)若存在x0∈[-$\frac{3}{2}$,1],使不等式a+1>f(x0) 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.化简:(式中字母都是正数)($\root{3}{\root{6}{{a}^{9}}}$)2•($\root{6}{\root{3}{{a}^{9}}}$)2=a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(1)求函数f(x)的最小正周期和单调增区间;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度后得到函数g(x)的图象,求函数g(x)在区间$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=cos2x+sin($\frac{π}{2}$+x)的最小值是(  )
A.-2B.-$\frac{9}{8}$C.-$\frac{7}{8}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,则$\overrightarrow a⊥\overrightarrow b$
B.若a,b,c为实数,且a<b<0,则$\frac{b}{a}<\frac{a}{b}$
C.已知m,n是空间两条不同的直线,α,β,γ是空间三个不同的平面,若α∩γ=m,β∩γ=n,m∥n则α∥β
D.已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,若A1B2=A2B1,则l1∥l2

查看答案和解析>>

同步练习册答案