精英家教网 > 高中数学 > 题目详情
8.函数f(x)=2sin(ωx+φ)(w>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)+f($\frac{17π}{12}$)的值为(  )
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.1-$\frac{\sqrt{3}}{2}$D.1+$\frac{\sqrt{3}}{2}$

分析 根据函数f(x)的部分图象,求出周期T与ω的值,再计算φ的值,写出f(x)的解析式,从而求出f(0)+f($\frac{17π}{12}$)的值.

解答 解:根据函数f(x)=2sin(ωx+φ)(w>0,|φ|<$\frac{π}{2}$)的部分图象,
得$\frac{1}{4}$T=$\frac{π}{6}$-(-$\frac{π}{12}$)=$\frac{π}{4}$,
又T=$\frac{2π}{ω}$=π,∴ω=2;
当x=-$\frac{π}{12}$时,函数f(x)取得最小值-2,
∴2×(-$\frac{π}{12}$)+φ=-$\frac{π}{2}$+2kπ,k∈Z,
解得φ=-$\frac{π}{3}$+2kπ,k∈Z,
又|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{3}$,
∴f(x)=2sin(2x-$\frac{π}{3}$);
∴f(0)+f($\frac{17π}{12}$)=2sin(-$\frac{π}{3}$)+2sin(2×$\frac{17π}{12}$-$\frac{π}{3}$)
=2×(-$\frac{\sqrt{3}}{2}$)+2sin$\frac{5π}{2}$
=2-$\sqrt{3}$.
故选:A.

点评 本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,边长为3$\sqrt{3}$的正方形ABCD中,点E,F分别是边AB,BC上的点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.

(1)求证:A′D⊥EF;
(2)当BE=BF=$\frac{1}{3}$BC时,求三棱锥A′-EFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(1+2x)(1+x)5的展开式中x2的系数是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合A={x|(x+1)(x-10)<0},B={y∈N|y<6},则A∩B等于(  )
A.B.(-1,6)C.{1,2,3,4,5}D.{0,1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设命题p:?x>0,lnx>lgx,命题q:?x>0,$\sqrt{x}$=1-x2,则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.p∧¬qD.¬p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列an是公差不为零的等差数列,且a3=5,a2,a4,a12成等比数列.数列{bn}的每一项均为正实数,其前n项和为Sn,且满足4Sn=bn2+2bn-3(n∈N*) 
(I)数列{an},{bn}的通项公式
(Ⅱ)令cn=$\frac{1}{(2{a}_{n}+5){b}_{n}}$,记数列{cn}的前n项和为Tn,若$\frac{{T}_{n}}{{T}_{n+1}}$≥$\frac{{a}_{m}}{{a}_{m+1}}$ 对?n∈N* 恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在斜△ABC中,内角A,B,C所对的边长分别是a,b,c,asinB+bcos(B+C)=0,sinA+sin(B-C)=2$\sqrt{2}$sin2C,且△ABC的面积为1,则a的值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且6S=(a+b)2-c2,则tanC等于(  )
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$\frac{12}{5}$D.$-\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求直线4x-3y-5=0的倾斜角(精确到0.01).

查看答案和解析>>

同步练习册答案