精英家教网 > 高中数学 > 题目详情
20.在斜△ABC中,内角A,B,C所对的边长分别是a,b,c,asinB+bcos(B+C)=0,sinA+sin(B-C)=2$\sqrt{2}$sin2C,且△ABC的面积为1,则a的值为(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

分析 由asinB+bcos(B+C)=0,利用正弦定理可得sinAsinB-sinBcosA=0,由sinB≠0,化为sinA=cosA,A∈(0,π),可得A=$\frac{π}{4}$.
由sinA+sin(B-C)=2$\sqrt{2}$sin2C,利用和差公式、倍角公式展开可得sinB=2$\sqrt{2}$sinC,利用正弦定理可得b=2$\sqrt{2}$c.再利用余弦定理与三角形面积计算公式即可得出.

解答 解:在斜△ABC中,∵asinB+bcos(B+C)=0,
∴sinAsinB-sinBcosA=0,
∵sinB≠0,
∴sinA=cosA,A∈(0,π),
∴tanA=1,解得A=$\frac{π}{4}$.
∵sinA+sin(B-C)=2$\sqrt{2}$sin2C,
∴sinBcosC+cosBsinC+sinBcosC-cosBsinC=2$\sqrt{2}$sin2C,
∴2sinBcosC=4$\sqrt{2}$sinCcosC
∵cosC≠0,
∴sinB=2$\sqrt{2}$sinC,
∴b=2$\sqrt{2}$c.
由余弦定理可得:a2=$(2\sqrt{2}c)^{2}+{c}^{2}$-2×$2\sqrt{2}$c2cos$\frac{π}{4}$=5c2
∵△ABC的面积为1,
∴$\frac{1}{2}bcsinA$=1,
∴$\frac{1}{2}×2\sqrt{2}{c}^{2}×sin\frac{π}{4}$=1,解得c2=1.
则a=$\sqrt{5}$.
故选:B.

点评 本题考查了正弦定理余弦定理、和差公式、倍角公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,是一程序框图,则输出结果为75.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知正三棱柱ABC-A1B1C1的体积为$9\sqrt{3}$,底面边长为3,求异面直线BC1与AC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2sin(ωx+φ)(w>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)+f($\frac{17π}{12}$)的值为(  )
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.1-$\frac{\sqrt{3}}{2}$D.1+$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线$l:\frac{x}{a}+\frac{y}{b}=1({a>0,b>0})$过点A(1,2),则a+8b的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个圆过点(-5,1)且圆心在直线2x+y+4=0上,求半径最小时的圆心坐标(  )
A.(-1,-2)B.(-2,0)C.(-$\frac{5}{2}$,1)D.(-3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2<1},B={x|log2x<1},则A∩B=(  )
A.{x|-1<x<1}B.{x|0<x<1}C.{x|0<x<2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列各个对数中,其值为负的有(2)(4)(5),其值在0.1之间的有(1)(38,其值大于1的有(6)(7).
(1)ln2;(2)ln$\frac{1}{4}$;(3)lg5;(4)lg$\frac{1}{5}$;(5)log0.32;(6)log34;(7)log0.40.3;(8)$lo{g}_{\frac{1}{6}}\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x+$\frac{1}{{x}^{2}}$.
(I)求函数f(x)的单调区间;
(Ⅱ)探究直线y=kx-1与曲线y=f(x)的交点个数,并说明理由.

查看答案和解析>>

同步练习册答案