精英家教网 > 高中数学 > 题目详情
13.“a>4”是“方程x2+ax+a=0有两个负实数根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 方程x2+ax+a=0有两个负实数根,则$\left\{\begin{array}{l}{△={a}^{2}-4a≥0}\\{-a<0}\\{a>0}\end{array}\right.$,解出即可判断出结论.

解答 解:方程x2+ax+a=0有两个负实数根,则$\left\{\begin{array}{l}{△={a}^{2}-4a≥0}\\{-a<0}\\{a>0}\end{array}\right.$,解得a≥4,
∴“a>4”是“方程x2+ax+a=0有两个负实数根”的充分不必要条件.
故选:A.

点评 本题考查了一元二次方程的实数根与判别式的关系、根与系数的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若二次函数ax2+bx+c=0的两个实数根为-2,3(a<0),则ax2+bx+c>0的解集为(  )
A.{x|x<-2或x>3}B.{x|x<-3或x>2}C.{x|-2<x<3}D.{x|-3<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$f(x)={(\frac{1}{2})^x}-2,g(x)=a(x-a+3)$同时满足以下两个条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-1,1),f(x)g(x)<0.
则实数a的取值范围为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别为a,b,c,已知b2-a2=ac.
(Ⅰ) 若$cosB=\frac{1}{4}$,a=1,求△ABC的面积;
(Ⅱ)若$A=\frac{π}{6}$,求B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2$\frac{A+B}{2}-cos2C=\frac{7}{2}$.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\frac{{\sqrt{3}}}{2}$,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:A,B,C是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的顶点,点F(c,0)为椭圆的右焦点,原点O到直线CF的距离为$\frac{1}{2}c$,且椭圆过点$({2\sqrt{3},1})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,问是否存在实数λ,使得$λ{k_1}=k+\frac{1}{2}$成立,若存在求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中$\overline{a}$是这7个数据的平均数),则输出的S的值是(  )
观测次数i1234567
观测数据ai5686888
A.1B.$\frac{8}{7}$C.$\frac{9}{7}$D.$\frac{10}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设直线l与平面α平行,直线m在平面α上,那么(  )
A.直线l平行于直线mB.直线l与直线m异面
C.直线l与直线m没有公共点D.直线l与直线m不垂直

查看答案和解析>>

同步练习册答案