精英家教网 > 高中数学 > 题目详情
5.如图:A,B,C是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的顶点,点F(c,0)为椭圆的右焦点,原点O到直线CF的距离为$\frac{1}{2}c$,且椭圆过点$({2\sqrt{3},1})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,问是否存在实数λ,使得$λ{k_1}=k+\frac{1}{2}$成立,若存在求出λ的值,若不存在,请说明理由.

分析 (Ⅰ)推导出直线CF的方程为bx+cy-bc=0,由原点O到CF的距离为$\frac{1}{2}c$,椭圆过点$({2\sqrt{3},1})$,求出a,b,由此能求出椭圆方程.
(Ⅱ)求出直线BC的方程为y=$\frac{1}{2}x+2$,直线AP的方程为:y=k(x-4),代入椭圆方程,得(4k2+1)x2-32k2x+64k2-16=0,求出直线CP的方程为y=$\frac{1+2k}{2(1-2k)}x+2$,从而得到E($\frac{8k-4}{2k+1}$,0),将直线BC与直线AP联立,得D($\frac{8k+4}{2k-1}$,$\frac{8k}{2k-1}$),由此能求出λ.

解答 解:(Ⅰ)由题意,得C(0,b),∴直线CF的方程为y=-$\frac{b}{c}x$+b,
即bx+cy-bc=0,
又原点O到CF的距离为$\frac{1}{2}c$,
∴$\frac{|-bc|}{\sqrt{{b}^{2}+{c}^{2}}}$=$\frac{1}{2}c$,由b2+c2=a2整理,得a=2b,
又椭圆过点$({2\sqrt{3},1})$,∴$\frac{12}{4{b}^{2}}+\frac{1}{{b}^{2}}$=1,
解得a2=16,b2=4,
∴椭圆方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$.
(Ⅱ)由(Ⅰ)知B(-4,0),C(0,2),
故直线BC的方程为y=$\frac{1}{2}x+2$,
∵直线AP的斜率为k,点A(4,0),∴直线AP的方程为:y=k(x-4),
联立$\left\{\begin{array}{l}{y=k(x-4)}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(4k2+1)x2-32k2x+64k2-16=0,
又点P(xP,yp)在椭圆上,故有:4•xP=$\frac{64{k}^{2}-16}{4{k}^{2}+1}$,
∴xP=$\frac{16{k}^{2}-4}{4{k}^{2}+1}$,${y}_{p}=k(\frac{16{k}^{2}-4}{4{k}^{2}+1}-4)=\frac{-8k}{4{k}^{2}+1}$,
∴P($\frac{16{k}^{2}-4}{4{k}^{2}+1}$,$\frac{-8k}{4{k}^{2}+1}$),
故直线CP的方程为y=$\frac{2+\frac{8k}{4{k}^{2}+1}}{0-\frac{16{k}^{2}-4}{4{k}^{2}+1}}$x+2,
即y=$\frac{1+2k}{2(1-2k)}x+2$,
又点E为直线CP与x轴交点,令y=0得x=$\frac{8k-4}{2k+1}$,
∴E($\frac{8k-4}{2k+1}$,0),
将直线BC与直线AP联立,得:
$\left\{\begin{array}{l}{y=\frac{1}{2}x+2}\\{y=k(x-4)}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{8k+4}{2k-1}}\\{y=\frac{8k}{2k-1}}\end{array}\right.$,∴D($\frac{8k+4}{2k-1}$,$\frac{8k}{2k-1}$),
故直线DE的斜率为:
${k}_{1}=\frac{\frac{8k}{2k-1}-0}{\frac{8k+4}{2k-1}-\frac{8k-4}{2k+1}}$=$\frac{2k(2k+1)}{8k}$=$\frac{1}{4}(2k+1)=\frac{1}{2}(k+\frac{1}{2})$,
∴$2{k}_{1}=k+\frac{1}{2}$,
∴λ=2.

点评 本题考查椭圆方程的求法,考查满足条件实数值是否存在的判断与求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知tan(α+β)=0,求证:sin(α+2β)+sinα=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若直线l:$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)经过点(1,2),则直线l作坐标轴所围成的三角形面积的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a>4”是“方程x2+ax+a=0有两个负实数根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA-sinB)=(c-b)sinC
(Ⅰ)求∠A的大小;
(Ⅱ)若f(x)=$\sqrt{3}$sin$\frac{x}{2}$•cos$\frac{x}{2}$+cos2 $\frac{x}{2}$,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知中心在坐标原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$的椭圆C过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不过坐标原点O的直线与椭圆C交于P,Q两点,若OP⊥OQ,证明:点O到直线PQ的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要制作一个容积为8m3,高为2m的无盖长方体容器,若容器的底面造价是每平方米200元,侧面造型是每平方米100元,则该容器的最低总造价为(  )
A.1200元B.2400元C.3600元D.3800元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}为等差数列,a2=2且满足a2,a3,a5成等比数列,则数列{an}的前10项的和为(  )
A.80B.90C.20D.20或90

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点,过原点的直线与双曲线的左、右两支分别交于两点A,B,若$\overrightarrow{AF}$•$\overrightarrow{BF}$=0,且∠BAF∈($\frac{π}{12}$,$\frac{π}{6}$),则该双曲线离心率的取值范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{3}$+1)C.($\sqrt{2}$,+∞)D.($\sqrt{2}$,$\sqrt{3}$+1)

查看答案和解析>>

同步练习册答案