精英家教网 > 高中数学 > 题目详情
14.已知数列{an}为等差数列,a2=2且满足a2,a3,a5成等比数列,则数列{an}的前10项的和为(  )
A.80B.90C.20D.20或90

分析 先根据等比中项的性质求出公差d,再根据等差数列的前n项和公式计算即可.

解答 解:a2,a3,a5成等比数,
∴(a2+d)2=a2•(a2+3d),
∴(2+d)2=2•(2+3d),
解得d=0或d=2,
∴a1=2,或a1=0,
当d=0时,S10=10a1=20,
当d=2,S10=10a1+$\frac{10(10-1)×2}{2}$=90,
故选:D.

点评 本题考查了等差数列的通项公式和前n项和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:A,B,C是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的顶点,点F(c,0)为椭圆的右焦点,原点O到直线CF的距离为$\frac{1}{2}c$,且椭圆过点$({2\sqrt{3},1})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,问是否存在实数λ,使得$λ{k_1}=k+\frac{1}{2}$成立,若存在求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中$\overline{a}$是这7个数据的平均数),则输出的S的值是(  )
观测次数i1234567
观测数据ai5686888
A.1B.$\frac{8}{7}$C.$\frac{9}{7}$D.$\frac{10}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F2,M是双曲线C在第一象限上一点,N与M关于原点对称,MF2交双曲线C于另一点P,NF2⊥PF2,|NF2|=|PF2|,则双曲线C的渐近线为y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z满足(z-1)(1+i)=2(i为虚数单位),则|z|=(  )
A.1B.5C.$\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的算法框图中,e是自然对数的底数,则输出的i的值为(参考数值:ln2016≈7.609)(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设直线l与平面α平行,直线m在平面α上,那么(  )
A.直线l平行于直线mB.直线l与直线m异面
C.直线l与直线m没有公共点D.直线l与直线m不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=1+2i,i为虚数单位.则z1z2=(  )
A.3B.-5C.-5iD.-1-4i

查看答案和解析>>

同步练习册答案