精英家教网 > 高中数学 > 题目详情
19.设复数z满足(z-1)(1+i)=2(i为虚数单位),则|z|=(  )
A.1B.5C.$\sqrt{5}$D.$\sqrt{13}$

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵(z-1)(1+i)=2,
∴z=1+$\frac{2}{1+i}$=1+$\frac{2(1-i)}{(1+i)(1-i)}$=2-i,
因此$|z|=\sqrt{{2^2}+1}=\sqrt{5}$,
故选:C.

点评 本题考查了分式形式的复数运算,注意分母实数化的步骤,分子分母要求同乘分母的共轭复数;求模运算注意正确选取实部和虚部;本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=log2(3x-1),则使得2f(x)>f(x+2)成立的x的取值范围是(  )
A.(-$\frac{5}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(-∞,-$\frac{1}{3}$)∪($\frac{4}{3}$,+∞)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知中心在坐标原点O,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$的椭圆C过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不过坐标原点O的直线与椭圆C交于P,Q两点,若OP⊥OQ,证明:点O到直线PQ的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.实数x,y满足$\frac{{x}^{2}}{4}$-y2=1,则3x2-2xy的最小值是6+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}为等差数列,a2=2且满足a2,a3,a5成等比数列,则数列{an}的前10项的和为(  )
A.80B.90C.20D.20或90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆x2+y2-2x+2y=0的圆心到直线y=x+1的距离是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}}+\frac{y^2}{{^{b^2}}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点P(0,-1).
(1)求椭圆的方程;
(2)如果过点Q(0,$\frac{3}{5}$)的直线与椭圆交于A,B两点(A,B点与P点不重合).
①求$\overrightarrow{PA}$•$\overrightarrow{PB}$的值;
②当△PAB为等腰直角三角形时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在三棱锥P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P-ABC的外接球的表面积为8π,则该三棱锥的体积为(  )
A.$\frac{\sqrt{2}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是周期为4的奇函数,x∈[0,2]时,f(x)=$\sqrt{1-(x-1)^{2}}$.若方程f(x)-tx=0恰好有5个实根,则正实数t等于(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

同步练习册答案