精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=log2(3x-1),则使得2f(x)>f(x+2)成立的x的取值范围是(  )
A.(-$\frac{5}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(-∞,-$\frac{1}{3}$)∪($\frac{4}{3}$,+∞)D.(-$\frac{1}{3}$,+∞)

分析 根据对数的运算可将原不等式化为(3x-1)2>3x+5,且3x-1>0,解得答案.

解答 解:∵函数f(x)=log2(3x-1),
则不等式2f(x)>f(x+2)可化为:2log2(3x-1)>log2(3x+5),
即(3x-1)2>3x+5,且3x-1>0,
解得:x>$\frac{4}{3}$,
即使得2f(x)>f(x+2)成立的x的取值范围是($\frac{4}{3}$,+∞),
故选:B.

点评 本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知曲线f(x)=ke-2x在点x=0处的切线与直线x-y-1=0垂直,若x1,x2是函数g(x)=f(x)-|1nx|的两个零点,则(  )
A.1<x1x2<$\sqrt{e}$B.$\frac{1}{\sqrt{e}}$<x1x2<1C.2<x1x2<2$\sqrt{e}$D.$\frac{2}{\sqrt{e}}$<x1x2<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{x-a}{x-1}$,集合M={x|f(x)<0},P={x|f′(x)>0},若M?P,则实数a的取值范围是(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有10种不同的玩具汽车,9中不同的洋娃娃,8种不同的闪光球,从中任取两种不同类的玩具,共有242种不同的取法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足不等式组$\left\{\begin{array}{l}{lo{g}_{0.5}(2x-y)≥0}\\{1≤x≤2}\end{array}\right.$,z=x+2y,则(  )
A.z的最大值为10,无最小值B.z的最小值为3,无最大值
C.z的最大值为10,最小值为3D.z的最大值为10,最小值为3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$f(x)={(\frac{1}{2})^x}-2,g(x)=a(x-a+3)$同时满足以下两个条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-1,1),f(x)g(x)<0.
则实数a的取值范围为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2$\frac{A+B}{2}-cos2C=\frac{7}{2}$.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\frac{{\sqrt{3}}}{2}$,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z满足(z-1)(1+i)=2(i为虚数单位),则|z|=(  )
A.1B.5C.$\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

同步练习册答案