精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足不等式组$\left\{\begin{array}{l}{lo{g}_{0.5}(2x-y)≥0}\\{1≤x≤2}\end{array}\right.$,z=x+2y,则(  )
A.z的最大值为10,无最小值B.z的最小值为3,无最大值
C.z的最大值为10,最小值为3D.z的最大值为10,最小值为3

分析 化简不等式组,作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.

解答
解:实数x,y满足不等式组$\left\{\begin{array}{l}{lo{g}_{0.5}(2x-y)≥0}\\{1≤x≤2}\end{array}\right.$,化为:$\left\{\begin{array}{l}{0<2x-y≤1}\\{1≤x≤2}\end{array}\right.$,作出不等式对应的平面区域如图,
由z=x+2y,得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,经过点A时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{x=1}\\{2x-y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
此时z的最小值为z=1+2×1=3,平移直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z,经过点B时,直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此时z最大
由$\left\{\begin{array}{l}{y=2x}\\{x=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即B(2,4),
此时z的最大值为z=2+2×4=10,因为可行域不包含(2,4),
所以z<10
故选:B.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示,一个圆乒乓球筒,高为20厘米,底面半径为2厘米,球桶的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度均忽略不计),一个平面与两个乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{15}}{4}$C.$\frac{2\sqrt{6}}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线,则$\frac{1}{6}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$与-2$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$(  )
A.一定共线B.一定不共线C.可能共线D.可能不共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠ABC=90°,AB=2,BC=BB1=1,D是棱A1B1上一点.
(Ⅰ)证明:BC⊥AD;
(Ⅱ)求三棱锥B-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=log2(3x-1),则使得2f(x)>f(x+2)成立的x的取值范围是(  )
A.(-$\frac{5}{3}$,+∞)B.($\frac{4}{3}$,+∞)C.(-∞,-$\frac{1}{3}$)∪($\frac{4}{3}$,+∞)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图的程序框图,则输出S的值为(  )
A.$\frac{199}{200}$B.$\frac{197}{198}$C.$\frac{197}{199}$D.$\frac{198}{199}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,若数列{an}是单调递增数列,且满足a5≤6,S3≥9,则a6的取值范围是(  )
A.(3,6]B.(3,6)C.[3,7]D.(3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.奇函数f(x)的定义域为(-5,5),若x∈[0,5)时,f(x)的图象如图所示,则不等式f(x)<0的解集为(-2,0)∪(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆x2+y2-2x+2y=0的圆心到直线y=x+1的距离是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案