精英家教网 > 高中数学 > 题目详情
8.若二次函数ax2+bx+c=0的两个实数根为-2,3(a<0),则ax2+bx+c>0的解集为(  )
A.{x|x<-2或x>3}B.{x|x<-3或x>2}C.{x|-2<x<3}D.{x|-3<x<2}

分析 根据不等式和一元二次方程关系即可求出答案.

解答 解:二次函数ax2+bx+c=0的两个实数根为-2,3(a<0),
则ax2+bx+c>0解为-2<x<3,
故不等式的解集为{x|-2<x<3},
故选:C.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设向量$\overrightarrow{m}$=2$\overrightarrow{a}$-3$\overrightarrow{b}$,$\overrightarrow{n}$=4$\overrightarrow{a}$-2$\overrightarrow{b}$,$\overrightarrow{p}$=3$\overrightarrow{a}$+2$\overrightarrow{b}$,若用$\overrightarrow{m}$,$\overrightarrow{n}$表示$\overrightarrow{p}$,则$\overrightarrow{p}$=$-\frac{7}{4}$$\overrightarrow{m}$$+\frac{13}{8}$$\overrightarrow{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-9,则λ的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x>3,求f(x)=x+$\frac{4}{x-3}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知平面区域D={(x,y)|0≤x≤1,|y|≤1},?(x,y)∈D,$\sqrt{{(x-\frac{1}{4})}^{2}{+y}^{2}}$≥|x+$\frac{1}{4}$|的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a,b∈R+,则下列不等式中一定不成立的是(  )
A.a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$B.(a+b)($\frac{1}{a}$+$\frac{1}{b}$)>4
C.$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$>abD.$\frac{2ab}{a+b}$>$\sqrt{ab}$
E.a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$F.$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$≥$\frac{2ab}{\sqrt{ab}}$=$2\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan(α+β)=0,求证:sin(α+2β)+sinα=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,∠C=90°,M是长度为定值的BC边上一点,sin∠BAM=$\frac{1}{3}$.若$\overrightarrow{BM}•\overrightarrow{MA}$取得最大值1时,则AC的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a>4”是“方程x2+ax+a=0有两个负实数根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案