精英家教网 > 高中数学 > 题目详情
13.设a,b∈R+,则下列不等式中一定不成立的是(  )
A.a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$B.(a+b)($\frac{1}{a}$+$\frac{1}{b}$)>4
C.$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$>abD.$\frac{2ab}{a+b}$>$\sqrt{ab}$
E.a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$F.$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$≥$\frac{2ab}{\sqrt{ab}}$=$2\sqrt{ab}$

分析 利用基本不等式判断即可.

解答 解:∵a+b+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{ab}$$+\frac{1}{\sqrt{ab}}$(a=b等号成立),
2$\sqrt{ab}$$+\frac{1}{\sqrt{ab}}$≥2$\sqrt{2}$(ab=$\frac{1}{2}$等号成立),
a+b+$\frac{1}{\sqrt{ab}}$>2$\sqrt{2}$,
∴(a+b)($\frac{1}{a}$+$\frac{1}{b}$)=2$+\frac{a}{b}$$+\frac{b}{a}$≥4(a=b等号成立),
$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$≥$\frac{2ab}{\sqrt{ab}}$=$2\sqrt{ab}$,
$\frac{2ab}{a+b}$$≤\frac{2ab}{2\sqrt{ab}}$=$\sqrt{ab}$,
∴一定不成立的是D,
故选:D.

点评 本题考察了基本不等式的运用,关键掌握好条件,不等号方向.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知点A(0,1)与B($\sqrt{3}$,$\frac{1}{2}$)都在椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,直线AB交x轴于点M.
(1)求椭圆C的方程,并求点M的坐标;
(2)设O为原点,点D与点B关于x轴对称,直线AD交x轴于点N,问:y轴上是否存在点E,使得∠OEM=∠ONE?若存在,求点E的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线f(x)=ke-2x在点x=0处的切线与直线x-y-1=0垂直,若x1,x2是函数g(x)=f(x)-|1nx|的两个零点,则(  )
A.1<x1x2<$\sqrt{e}$B.$\frac{1}{\sqrt{e}}$<x1x2<1C.2<x1x2<2$\sqrt{e}$D.$\frac{2}{\sqrt{e}}$<x1x2<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a=logn(n+1),b=log(n+1)(n+2),n∈N*,则a,b的大小关系为b<a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若二次函数ax2+bx+c=0的两个实数根为-2,3(a<0),则ax2+bx+c>0的解集为(  )
A.{x|x<-2或x>3}B.{x|x<-3或x>2}C.{x|-2<x<3}D.{x|-3<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$是(  )
A.奇函数B.偶函数
C.是奇函数又是偶函数D.非奇函数非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{x-a}{x-1}$,集合M={x|f(x)<0},P={x|f′(x)>0},若M?P,则实数a的取值范围是(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.有10种不同的玩具汽车,9中不同的洋娃娃,8种不同的闪光球,从中任取两种不同类的玩具,共有242种不同的取法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C所对的边分别为a,b,c,已知4sin2$\frac{A+B}{2}-cos2C=\frac{7}{2}$.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\frac{{\sqrt{3}}}{2}$,求a-b的取值范围.

查看答案和解析>>

同步练习册答案