| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 以AC所在直线为x轴,BD所在直线为y轴,建立直角坐标系.由题意可得A(-3,0),B(0,3$\sqrt{3}$),C(3,0),D(0,-3$\sqrt{3}$),运用向量共线的坐标表示和向量的数量积的坐标表示,解方程即可得到所求值.
解答
解:以AC所在直线为x轴,BD所在直线为y轴,建立直角坐标系.
由题意菱形ABCD的边长为6,∠ABD=30°,
可得A(-3,0),B(0,3$\sqrt{3}$),C(3,0),D(0,-3$\sqrt{3}$),
BC=2BE,可得E($\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$),
CD=λCF,即有(-3,-3$\sqrt{3}$)=λ(xF-3,yF-0),
可得F($\frac{3λ-3}{λ}$,-$\frac{3\sqrt{3}}{λ}$),
由$\overrightarrow{AE}$•$\overrightarrow{BF}$=-9,可得
($\frac{9}{2}$,$\frac{3\sqrt{3}}{2}$)•($\frac{3λ-3}{λ}$,-$\frac{3\sqrt{3}}{λ}$-3$\sqrt{3}$)=-9,
即有$\frac{9}{2}$•$\frac{3λ-3}{λ}$+$\frac{3\sqrt{3}}{2}$(-$\frac{3\sqrt{3}}{λ}$-3$\sqrt{3}$)=-9,
解得λ=3.
故选:B.
点评 本题考查向量的数量积的坐标表示,同时考查向量共线的坐标表示,运用向量的问题坐标化是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1<x1x2<$\sqrt{e}$ | B. | $\frac{1}{\sqrt{e}}$<x1x2<1 | C. | 2<x1x2<2$\sqrt{e}$ | D. | $\frac{2}{\sqrt{e}}$<x1x2<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<-2或x>3} | B. | {x|x<-3或x>2} | C. | {x|-2<x<3} | D. | {x|-3<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com