精英家教网 > 高中数学 > 题目详情
10.已知O是△ABC内一点,∠AOB=150°,∠AOC=120°,且|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=3,若m$\overrightarrow{OA}$+n$\overrightarrow{OB}$=$\overrightarrow{OC}$,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|=$\sqrt{8-2\sqrt{3}}$,m+$\sqrt{3}$n的值是-12.

分析 求向量的模,先平方再开方,利用向量的数量积运算,可得结论;
设$\overrightarrow{OA′}$=m$\overrightarrow{OA}$,$\overrightarrow{OB′}$=n$\overrightarrow{OB}$,由向量加法及数乘向量的几何意义m<0,n<0,且∠COB′=90°,∠CB′D=30°,从而可建立方程,即可求实数m,n的值.

解答 解:∵O是△ABC内一点,∠AOB=150°,∠AOC=120°,且|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=3,
∴∠BOC=90°,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|cos150=2×1×(-$\frac{\sqrt{3}}{2}$)=-$\sqrt{3}$,
$\overrightarrow{OA}$•$\overrightarrow{OC}$=|$\overrightarrow{OA}$|•|$\overrightarrow{OC}$|cos120=2×3×(-$\frac{1}{2}$)=-3,
$\overrightarrow{OB}$•$\overrightarrow{OC}$=0,
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|2=|$\overrightarrow{OA}$|2+|$\overrightarrow{OB}$|2+|$\overrightarrow{OC}$|2+2($\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$+$\overrightarrow{OB}$•$\overrightarrow{OC}$)=8-2$\sqrt{3}$,
∴|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|=$\sqrt{8-2\sqrt{3}}$;
设$\overrightarrow{OA′}$=m$\overrightarrow{OA}$,$\overrightarrow{OB′}$=n$\overrightarrow{OB}$,
由向量加法及数乘向量的几何意义m<0,n<0,且∠COB′=90°,∠CB′D=30°,
∴|$\overrightarrow{B′C}$|2=|$\overrightarrow{OC′}$|2+|$\overrightarrow{OB′}$|2,且2|$\overrightarrow{OC}$|=|$\overrightarrow{OA′}$|,
∴4m2=n2+9,且6=2|m|
∴m=-3,n=-3$\sqrt{3}$,
∴m+$\sqrt{3}$n=-3-3$\sqrt{3}$×$\sqrt{3}$=-12,
故答案为:$\sqrt{8-2\sqrt{3}}$,-12

点评 本题考查向量知识的运用,考查向量的模,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{ax+b,x<-1}\\{ln(x+a),x≥-1}\\{\;}\end{array}\right.$的图象如图所示,则f(-3)等于(  )
A.-$\frac{1}{2}$B.-$\frac{5}{4}$C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数y=2x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}x+y-3≤0\\ x-2y-3≤0\\ x≥m\end{array}\right.$,则实数m的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设向量$\overrightarrow{m}$=2$\overrightarrow{a}$-3$\overrightarrow{b}$,$\overrightarrow{n}$=4$\overrightarrow{a}$-2$\overrightarrow{b}$,$\overrightarrow{p}$=3$\overrightarrow{a}$+2$\overrightarrow{b}$,若用$\overrightarrow{m}$,$\overrightarrow{n}$表示$\overrightarrow{p}$,则$\overrightarrow{p}$=$-\frac{7}{4}$$\overrightarrow{m}$$+\frac{13}{8}$$\overrightarrow{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点(m,n)在第一象限,且在直线x+y-1=0上,则mn有最大值(填“大”或“小”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b是(0,2)内任意的两个实数,则使得函数f(x)=ln(ax2-2x+b)的值域为R的概率是(  )
A.$\frac{1-ln2}{4}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{4}$D.$\frac{1+2ln2}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某单位对360位应聘者进行了2个科目的测试,每个科目的成绩由高到低依次为优秀、良好和一般,从所有应聘者的成绩中随机抽取27个数据统计如下:
 优秀 良好一般 
 优秀 b 2 3
 良好 3 4 a
 一般 3 33
由表可见,科目一成绩为优秀且科目二成绩为良好的有2人,若将表中数据的频率设为概率,则估计有80位应聘者科目一的乘积高于科目二的成绩.
(Ⅰ)估计两科成绩相同的应聘者的人数;
(Ⅱ)从所有科目一成绩为良好的应聘者中随机抽取3人,设这3人成绩中优秀科目总数为ξ,求随机变量ξ的分布列及其数学期望Eξ;
(Ⅲ)根据两科测试成绩,每位应聘者可能属于9个不同的成绩组之一,设表中两科成绩不同的各组人数的方差为s12,科目一成绩不高于科目二成绩的各组人数的方差为s22,比较s12与s22的大小.(只写结论即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-9,则λ的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tan(α+β)=0,求证:sin(α+2β)+sinα=0.

查看答案和解析>>

同步练习册答案