精英家教网 > 高中数学 > 题目详情
14.数列{an}的前项n和为Sn,Sn+an=-$\frac{1}{2}$n2-$\frac{1}{2}$n+1
(1)设bn=an+n,证明:数列{bn}是等比数列;
(2)求数列{nbn}的前n项和Tn

分析 (1)求数列{an}的前3项,从而猜想数列的通项公式,利用数学归纳法证明即可.
(2)由(1)知nbn=n,从而利用等差数列求和公式求和.

解答 (1)证明:当n=1时,∵Sn+an=-$\frac{1}{2}$n2-$\frac{1}{2}$n+1,
∴a1+a1=-$\frac{1}{2}$-$\frac{1}{2}$+1=0,
∴a1=0,b1=0+1=1;
当n=2时,同理解得,a2=-1,b1=-1+2=1;
当n=3时,同理解得,a3=-2,b1=-2+3=1;
假设当n=k,(k≥2)时,ak=1-k,
则Sk=$\frac{0+1-k}{2}$•k,
则Sk+ak+1+ak+1=-$\frac{1}{2}$(k+1)2-$\frac{1}{2}$(k+1)+1,
解得,ak+1=-k=1-(k+1),
综上所述,an=1-n,
故bn=an+n=1-n+n=1,
故数列{bn}是等比数列;
(2)解:nbn=n,
故Tn=1+2+3+…+n=$\frac{n(n+1)}{2}$.

点评 本题考查了等差数列与等比数列的判断与应用,同时考查了数学归纳法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设F1,F2为椭圆的两个焦点,以F1为圆心作圆F2,已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点(m,n)在第一象限,且在直线x+y-1=0上,则mn有最大值(填“大”或“小”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某单位对360位应聘者进行了2个科目的测试,每个科目的成绩由高到低依次为优秀、良好和一般,从所有应聘者的成绩中随机抽取27个数据统计如下:
 优秀 良好一般 
 优秀 b 2 3
 良好 3 4 a
 一般 3 33
由表可见,科目一成绩为优秀且科目二成绩为良好的有2人,若将表中数据的频率设为概率,则估计有80位应聘者科目一的乘积高于科目二的成绩.
(Ⅰ)估计两科成绩相同的应聘者的人数;
(Ⅱ)从所有科目一成绩为良好的应聘者中随机抽取3人,设这3人成绩中优秀科目总数为ξ,求随机变量ξ的分布列及其数学期望Eξ;
(Ⅲ)根据两科测试成绩,每位应聘者可能属于9个不同的成绩组之一,设表中两科成绩不同的各组人数的方差为s12,科目一成绩不高于科目二成绩的各组人数的方差为s22,比较s12与s22的大小.(只写结论即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知下列条件,解三角形(角度精确到0.1°,边长精确到0.1cm)
(1)a=7cm,b=10cm,c=6cm
(2)a=9.4cm,b=15.9cm,c=21.1cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-9,则λ的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若x6(2x-3)8=a0+a1(x-1)+a2(x-1)2+…+a14(x-1)14,则a1+a2+a3+…+a14=(  )
A.16B.63C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知平面区域D={(x,y)|0≤x≤1,|y|≤1},?(x,y)∈D,$\sqrt{{(x-\frac{1}{4})}^{2}{+y}^{2}}$≥|x+$\frac{1}{4}$|的概率P=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,非零向量$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,x>0,y>0,若x=2|$\overrightarrow{a}$|,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角θ的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案