精英家教网 > 高中数学 > 题目详情
20.已知数列{an}各项均为正,若a1=1,且lgan+1+lgan=lg(an-an+1)(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{{a}_{n}}{n+1}$}的前n项和Sn,求Sn的取值范围.

分析 (1)由对数运算法则得到an+1an=an-an+1,从而$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,$\frac{1}{{a}_{1}}=1$,由此能求出数列{an}的通项公式.
(2)由$\frac{{a}_{n}}{n+1}$=$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,利用裂项求和法求出数列{$\frac{{a}_{n}}{n+1}$}的前n项和,由此能求出Sn的取值范围.

解答 解:(1)∵数列{an}各项均为正,a1=1,且lgan+1+lgan=lg(an-an+1)(n∈N*),
∴an+1an=an-an+1,∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,$\frac{1}{{a}_{1}}=1$,
∴{$\frac{1}{{a}_{n}}$}是以1为首项,公差为1的等差数列,
∴$\frac{1}{{a}_{n}}$=1+(n-1)•1=n,
∴数列{an}的通项公式${a}_{n}=\frac{1}{n}$.
(2)∵$\frac{{a}_{n}}{n+1}$=$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴数列{$\frac{{a}_{n}}{n+1}$}的前n项和:
Sn=1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
n=1时,(Snmin=1-$\frac{1}{1+1}$=$\frac{1}{2}$,Sn=1-$\frac{1}{n+1}$<1,
∴Sn的取值范围是[$\frac{1}{2},1$).

点评 本题考查数列的通项公式的求法,考查数列的前n项和的取值范围的求法,是中档题,解题时要认真审题,注意等差数列的性质、对数运算法则、裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数$f(x)=\left\{\begin{array}{l}{2^{-x}}-2,x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,如果f(x0)>1,则x0的取值范围是(  )
A.x0<-1或x0>1B.-log23<x0<1C.x0<-1D.x0<-log23或x0>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|21-2x<1},B={x|y=1og2(x-a)},若A⊆B,则a的取值范围a≤$\frac{1}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=loga(x+2)-1(a>0,a≠1).
(1)当a>1,f(x)在[0,1]上的最大值与最小值互为相反数,求a的值;
(2)当a>1时,若f(x)的图象不经过第四象限,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体ABCD-A1B1C1D1中,E是棱BC的中点.
(1)求证:BD1∥平面C1DE;
(2)在边AD上能否确定一点,使得平面BD1G⊥平面C1DE?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,已知抛物线C:y2=2px(p>0).设点D(n,0),E(m,0).M为抛物线C上的动点(异于顶点),连接ME并延长交抛物线C于点N,连接MD、ND并延长交抛物线C于点P、Q,连接PQ.设直线MN、PQ的斜率存在且分别为k1,k2
(1)若k1=1,m=2,|MN|=4$\sqrt{6}$,求p;
(2)是否存在与p关的常数λ,使得k2=λk1恒成立.若存在请用m,n表示出来;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$).
(1)求该函数的周期;
(2)求该函数的最小值,并指出取得最小值时的x的集合;
(3)用五点法作出该函数在其一个周期上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,“A=60°”是“cosA=$\frac{1}{2}$”的(  )条件.
A.充分不必要B.必要不充分C.充要D.都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知3x=4y=5z,证明$\frac{1}{z}$+$\frac{1}{2y}$=$\frac{1}{x•lg3}$.

查看答案和解析>>

同步练习册答案