精英家教网 > 高中数学 > 题目详情
12.对于函数y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$).
(1)求该函数的周期;
(2)求该函数的最小值,并指出取得最小值时的x的集合;
(3)用五点法作出该函数在其一个周期上的图象.

分析 根据函数的解析式,利用正弦函数的周期性、最值得出结论,再利用五点法作函数在一个周期上的图象

解答 解:(1)对于函数y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$),它的周期为$\frac{2π}{\frac{1}{2}}$=4π.
(2)该函数的最小值为-$\frac{1}{2}$,此时,$\frac{1}{2}$x+$\frac{π}{4}$=2kπ-$\frac{π}{2}$,求得x=4kπ-$\frac{3π}{2}$,k∈Z,
故函数的最小值为-$\frac{1}{2}$,并指出取得最小值时的x的集合为{x|x=4kπ-$\frac{3π}{2}$,k∈Z}.
(3)列表:

 $\frac{1}{2}$x+$\frac{π}{4}$ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x-$\frac{π}{2}$ $\frac{π}{2}$ $\frac{3π}{2}$ $\frac{5π}{2}$ $\frac{7π}{2}$
 y 0 $\frac{1}{2}$ 0-$\frac{1}{2}$ 0
作图:

点评 本题主要考查正弦函数的周期性、最值,用五点法作函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若{an}是等差数列,首项a1>0,a2015+a2016>0,a2015•a2016<0,则使前n项和Sn>0成立的最大正整数n是4030.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3tan(2x-$\frac{π}{3}$).
(1)求f(x)的定义域与单调区间
(2)比较f($\frac{π}{2}$)与f(-$\frac{π}{8}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}各项均为正,若a1=1,且lgan+1+lgan=lg(an-an+1)(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{{a}_{n}}{n+1}$}的前n项和Sn,求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数a>0,函数f(x)的定义域为R,则“对任意的x∈R,都有f(x-a)=-f(x)”是“2a是函数f(x)的一个周期”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.观察下列数阵:照此规律:第10行第10个数为91.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知tanx=-2,x在第四象限,则sinx=(  )
A.-$\frac{2}{5}$B.-$\frac{4}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinθ=$\frac{3}{5}$,且$\frac{π}{2}$<θ<$\frac{3π}{2}$,则cos$\frac{θ}{2}$=(  )
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.±$\frac{\sqrt{10}}{10}$D.±$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(1,cosθ),θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求θ的值
(2)求|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值
(3)求函数y=f(θ)=$\overrightarrow{a}$•$\overrightarrow{b}$的单调增区间.

查看答案和解析>>

同步练习册答案