精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=3tan(2x-$\frac{π}{3}$).
(1)求f(x)的定义域与单调区间
(2)比较f($\frac{π}{2}$)与f(-$\frac{π}{8}$)的大小.

分析 (1)由题意利用正切函数的定义域和单调性,求得f(x)的定义域与单调区间.
(2)根据函数的解析式,求得f($\frac{π}{2}$)与f(-$\frac{π}{8}$)的值,可得f($\frac{π}{2}$)与f(-$\frac{π}{8}$)的大小.

解答 解:(1)由函数f(x)=3tan(2x-$\frac{π}{3}$),可得2x-$\frac{π}{3}$≠kπ+$\frac{π}{2}$,
求得x≠$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,故函数的定义域为{x|x≠$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z}.
令kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<kπ+$\frac{π}{2}$,求得$\frac{kπ}{2}$-$\frac{π}{12}$<x<$\frac{kπ}{2}$+$\frac{5π}{12}$,
故函数的单调增区间为($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$ ).
(2)f($\frac{π}{2}$)=3tan$\frac{2π}{3}$=-3$\sqrt{3}$,
f(-$\frac{π}{8}$)=3tan(-$\frac{7π}{12}$)=-3tan($\frac{π}{4}$+$\frac{π}{3}$)=-3•$\frac{1+tan\frac{π}{3}}{1-tan\frac{π}{3}}$=-3•$\frac{1+\sqrt{3}}{1-\sqrt{3}}$=6+3$\sqrt{3}$,
∴f($\frac{π}{2}$)<f(-$\frac{π}{8}$).

点评 本题主要考查正切函数的定义域和单调性,求函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若函数f(x)满足下列条件:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M
(Ⅰ)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(Ⅱ) 试探究函数y=ax(a>0且a≠1)是否具有性质M?并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x≥0}\\{lo{g}_{2}(-x),x<0}\\{\;}\end{array}\right.$,若f(a)>f(-a),则实数a的取值范围是(  )
A.(-∞,$\frac{1-\sqrt{5}}{2}$)∪(0,$\frac{\sqrt{5}-1}{2}$)B.($\frac{1-\sqrt{5}}{2}$,0)∪($\frac{\sqrt{5}-1}{2}$,+∞)C.(-∞,$\frac{1-\sqrt{5}}{2}$)∪(0,$\frac{1+\sqrt{5}}{2}$)D.($\frac{1-\sqrt{5}}{2}$,0)∪($\frac{1+\sqrt{5}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|21-2x<1},B={x|y=1og2(x-a)},若A⊆B,则a的取值范围a≤$\frac{1}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在(-π,π)内使sinx>cosx成立的x的取值范围是(  )
A.($\frac{π}{4}$,π)∪(-$\frac{π}{2}$,-$\frac{π}{4}$)B.($\frac{π}{4}$,π)C.($\frac{π}{4}$,π)∪(-π,-$\frac{3π}{4}$)D.(-$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=loga(x+2)-1(a>0,a≠1).
(1)当a>1,f(x)在[0,1]上的最大值与最小值互为相反数,求a的值;
(2)当a>1时,若f(x)的图象不经过第四象限,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体ABCD-A1B1C1D1中,E是棱BC的中点.
(1)求证:BD1∥平面C1DE;
(2)在边AD上能否确定一点,使得平面BD1G⊥平面C1DE?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$).
(1)求该函数的周期;
(2)求该函数的最小值,并指出取得最小值时的x的集合;
(3)用五点法作出该函数在其一个周期上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线的顶点在原点,关于x轴对称,并且经过点M(-1,3),则抛物线的标准方程是y2=-9x.

查看答案和解析>>

同步练习册答案