精英家教网 > 高中数学 > 题目详情
11.设椭圆C1:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1与抛物线C2:y2=8x的一个交点坐标为(x0,y0),直线y=m(0<m<|y0|)与函数f(x)=$\left\{\begin{array}{l}{2\sqrt{2x}(0<x<{x}_{0})}\\{\frac{\sqrt{3}}{2}\sqrt{16-{x}^{2}}(4>x>{x}_{0})}\end{array}\right.$的图象交于A、B两点,其坐标分别为(xA,yA),(xB,yB),且xA<xB,点N为抛物线的焦点,求△ABN的周长的取值范围.

分析 可考虑用抛物线的焦半径公式和椭圆的焦半径公式来做,先通过联立抛物线与椭圆方程,求出交点坐标,可得A,B点的横坐标范围,再利用焦半径公式转换为以B点的横坐标为参数的式子,再根据前面求出的B点横坐标范围计算即可.

解答 解:由椭圆方程和抛物线方程联立,
解得x0=$\frac{4}{3}$,y0=±$\sqrt{\frac{32}{3}}$,
即有f(x)=$\left\{\begin{array}{l}{2\sqrt{2x},0<x<\frac{4}{3}}\\{\frac{\sqrt{3}}{2}\sqrt{16-{x}^{2}},\frac{4}{3}<x<4}\end{array}\right.$,
直线y=m(0<m<$\sqrt{\frac{32}{3}}$),
作出函数y=f(x)和直线y=m的图象,
由图象可得A在抛物线上,B在椭圆上,
由焦半径公式可得,△ABN的周长为
|AN|+|BN|+|AB|=xA+$\frac{p}{2}$+a-exB+xB-xA
=2+4-$\frac{1}{2}$xB+xB=6+$\frac{1}{2}$xB
由xB∈($\frac{4}{3}$,4),
可得6+$\frac{1}{2}$xB∈($\frac{20}{3}$,8).
故△ABN的周长的取值范围是($\frac{20}{3}$,8).

点评 本题考查了抛物线与椭圆焦半径公式的应用,做题时要善于把未知转化为已知,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.用一个平面去截正四面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有(  )
A.6个B.7个C.10个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=nn+1,g(n)=(n+1)n,(n∈N*
(Ⅰ)判断f(n)与g(n)的大小,并证明你的结论;
(Ⅱ)若an=$\frac{1}{g(n)}$,bn=2n-1,证明:a1b1+a2b2+…+anbn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,点E在棱PD上,且PE:ED=2:1.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角P-AE-C的余弦值;
(Ⅲ)在棱PC上是否存在点F,使得BF∥平面AEC?若存在,确定点F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{4}$+y2=1
(1)若直线y=kx+2椭圆有两个交点,求出k的取值范围;
(2)经过椭圆左顶点A的直线交椭圆另一点B,线段AB的垂直平分线上的一点P满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,若P点在y轴上,求出P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左右焦点分别为F1(-1,0)、F2(1,0),且过点E(-$\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$),过原点O且斜率为k(k≠0)的直线l与椭圆C交于P、Q两点,A、B为椭圆的左、右顶点,直线AP、AQ分别与椭圆的右准线交于M、N两点.
(1)求椭圆C的方程;
(2)证明:直线PA与直线PB的斜率之积是定值;
(3)证明:以MN为直径的圆经过椭圆内的一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆的C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{1}{2}$,长轴长为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l过点D(4,0)与椭圆C交于A、B两点.
①求△AOB面积的最大值(O为坐标原点)并求取最大值时直线l的方程;
②若E为椭圆C的左顶点,M(1,0),试问∠AMD=∠BME是否一定成立?如果成立请给出证明否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1.
(1)求证BD1⊥AC;
(2)求直线A1B与平面BB1D1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆C:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的右焦点为F,定点A(4,1),P是椭圆C上的动点,则|PA|+|PF|的取值范围是(  )
A.[10-$\sqrt{65}$,10+$\sqrt{65}$]B.[2,18]C.[$\frac{13}{5}$,9+$\sqrt{82}$]D.[10-$\sqrt{65}$,10]

查看答案和解析>>

同步练习册答案