精英家教网 > 高中数学 > 题目详情
19.过点M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圆x2+y2=1的切线l,l与x轴的交点为抛物线E:y2=2px(p>0)的焦点,l与抛物线E交于A、B两点,则AB中点到抛物线E的准线的距离为(  )
A.$\frac{5\sqrt{2}}{2}$B.3$\sqrt{2}$C.$\frac{7}{2}$$\sqrt{2}$D.4$\sqrt{2}$

分析 利用已知条件求出切线方程,求出抛物线的焦点坐标,得到抛物线方程,联立直线与抛物线方程,利用韦达定理求出中点的横坐标,然后求解结果.

解答 解:过点M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圆x2+y2=1的切线l,点在圆上,可得曲线的斜率为:1,
切线方程为:y+$\frac{\sqrt{2}}{2}$=x-$\frac{\sqrt{2}}{2}$,可得x-y-$\sqrt{2}$=0,直线与x轴的交点坐标($\sqrt{2}$,0),
可得抛物线方程为:y2=4$\sqrt{2}$x,
$\left\{\begin{array}{l}{{y}^{2}=4\sqrt{2}x}\\{y=x-\sqrt{2}}\end{array}\right.$,可得x2-6$\sqrt{2}x$+2=0,l与抛物线E交于A(x1,y1)、B(x2,y2),
可得:x1+x2=6$\sqrt{2}$,
则AB中点到抛物线E的准线的距离为:3$\sqrt{2}+\sqrt{2}$=4$\sqrt{2}$.
故选:D.

点评 本题考查抛物线的简单性质的应用,直线与抛物线的位置关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.计算:
(1)已知$a{\;}^{\frac{1}{2}}+a{\;}^{-\frac{1}{2}}=3$,求a+a-1
(2)$2{(lg\sqrt{2})^2}+lg\sqrt{2}•lg5+\sqrt{{{(lg\sqrt{2})}^2}-2lg\sqrt{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过定点P(2,-1)作动圆C:x2+y2-2ay+a2-2=0的一条切线,切点为T,则线段PT长的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在多面体ABCDE中,平面ABE⊥平面ABCD,△ABE是等边三角形,四边形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=$\frac{1}{2}$BC=2,M是EC的中点.
(1)求证:DM∥平面ABE;
(2)求三棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果圆(x-a)2+(y-a)2=8上存在一点P到直线y=-x的最短距离为$\sqrt{2}$,则实数a的值为(  )
A.-3B.3C.$3\sqrt{2}$D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆M的方程;
(2)若圆N:x2+y2=r2的斜率为k的切线l与椭圆M相交于P、Q两点,OP与OQ能否垂直?若能垂直,请求出相应的r的值,若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=$\sqrt{3}$,则E的离心率是(  )
A.2$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某次数学考试的成绩服从正态分布N(116,82),则成绩在140分以上的考生所占的百分比为(  )
(附:正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974)
A.0.3%B.0.23%C.1.3%D.0.13%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{|x-5|-1,3≤x≤7}\end{array}\right.$(a>0,且a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是(  )
A.[$\frac{1}{7}$,$\frac{1}{5}$]∪{3}B.[3,5]∪{$\frac{1}{7}$}C.[$\frac{1}{7}$,$\frac{1}{3}$)∪{5}D.[3,7)∪{$\frac{1}{5}$}

查看答案和解析>>

同步练习册答案